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PREFACE

We have found that usually the best way to learn something new is to ask concrete
questions and try to work out the answers. Often some of the simplest questions
have surprising and unexpected answers, and some seemingly complex problems
can be solved in a simple way. In this book we have collected some of these prob-
lems and our solutions to them. The book encompasses many issues we faced as
we ourselves made the transition from undergraduate students to practicing exper-
imental atomic physicists and instructors. However, the text is not intended to be
comprehensive, but rather addresses various aspects of atomic physics which we
have found interesting and important.

In the course of doing atomic physics, we always find ourselves crossing
boundaries into other subfields; the selection of problems reflects this gray area.
It also reflects our specific interests, with several problems about symmetry viola-
tion, etc. that would not appear in more “standard” textbooks. It is our philosophy
that working on specific problems usually helps with understanding of more gen-
eral issues, and indeed may be the most useful way toreally learn anything. It is
our hope that some selection of the broad range of problems given here will pique
the interest of any reader, and thus initiate this process.

Where possible, we try to emphasize approximation methods, dimensional
considerations, limiting cases, and symmetry arguments as opposed to formal
mathematics. We often appeal to pictures, tables, and graphs. This problem-
solving approach is aimed at developing intuition about physical principles and
fosters the important ability to perform “back-of-the-envelope” calculations. These
are the tools we find most useful when trying to solve the types of problems we
commonly encounter in the laboratory. Of course, on occasion a formal mathemat-
ical approach (as painful as it could be) can lead to important insights. Generally,
in order to deeply understand various aspects of physics, it is good to have both an
intuitive picture as well as the appropriate mathematical tools.

This book is intended for advanced undergraduates and beginning graduate
students interested in atomic, molecular and optical physics, and we assume that
readers possess basic knowledge of quantum mechanics [at the level of Griffiths
(1995), Bransden and Joachain (1989), or similar texts], electrodynamics [at the
level of Griffiths (1999), Purcell (1985), or similar texts], and thermodynamics [at
the level of Reif (1965), Kittel and Kroemer (1980), or similar texts]. However, we
hope that many of the problems will also be of interest to professional scientists.
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xii PREFACE

In physics, there continues to be a raging debate over what is the best system
of units to use and whether or not units should be standardized. We feel that the
choice of units is a personal one, especially since converting between different
systems is relatively straightforward. That said, in this book we have a tendency
to use CGS units, since we find them most convenient (especially in problems
involving electromagnetism). We also set~ = 1 when it is convenient to do so
and measure energies in frequency units, as is common practice in atomic physics
(since energy measurements are typically performed by measuring frequencies).

Each problem in the book is intended to stand on its own. If there is a particular
subject in atomic physics that one is interested in learning about, there may be a
problem about it in this book. We envision the reader turning right to that page and
starting to try to figure it out. Hopefully, at the end of this exercise, one will have
gained some familiarity with the topic, enabling her or him to understand more
advanced, specialized literature on the subject, or go straight to the lab and get to
work!

In the introduction to most problems there is a brief discussion of the relevance
of the topic to modern atomic physics with references to research literature on the
subject. The cited references are not intended to be comprehensive, but merely
provide a starting point in a search for more information about the subject of the
problem. We apologize in advance to the innumerable scientists whose important
contributions are not mentioned. Also, for a few problems, especially in subfields
of atomic physics dear to our hearts, there are some historical remarks. Of course,
there is a great deal of history surrounding almost all of the topics covered in this
book, and we could not tell all of it. Nonetheless, we thought a few, not widely
known stories might be enjoyable.

Some of the problems are written as tutorials on various subjects in atomic
physics [they are marked with a (T)]. In such problems, there are a series of
short questions that are intended to guide the reader through some important mate-
rial. Hopefully the reader will find this more entertaining and interactive than just
reading the explanation straight through.

We hope you enjoy reading and using the book as much as we have enjoyed
writing it!

D. B.
D. F. K.
D. P. D.

Berkeley, California
May 2003
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NOTATION

The following is a table of symbols commonly used throughout the book, their
meaning, and their value where appropriate. In most locations, we remind the
reader of the meaning of the symbols when they appear. Also see Appendix A for
practical units, conversion factors, and typical values of various parameters.

Symbol Meaning Value

m, me electron mass 9.1085× 10−28 g

0.511 MeV/c2

mp proton mass 1.6726× 10−24 g

938.28 MeV/c2

mn neutron mass 1.6750× 10−24 g

939.57 MeV/c2

mn −mp difference between nucleon masses1.293 MeV/c2

e electron charge magnitude 4.8029× 10−10 esu

h Planck’s constant 6.6252× 10−27 erg · s
~ = h/(2π) 1.0544× 10−27 erg · s
α = e2/(~c) fine structure constant 1/137.036

a0 = ~2/(me2) Bohr radius 5.292× 10−9 cm

µ0 = e~/(2mc) Bohr magneton 0.93× 10−20 erg/G

1.40 MHz/G

µN = e~/(2mpc) nuclear magneton 5.06× 10−24 erg/G

762 Hz/G

R∞ = me4/(4π~3c) Rydberg constant 109, 737 cm−1

kB Boltzmann’s constant 1.38066× 10−16 erg/K

8.61735× 10−5 eV/K

L, l orbital angular momentum units of~
(total, individual particle)

S, s electron spin units of~
J , j total electronic angular momentum units of~
I nuclear spin units of~
F total atomic angular momentum units of~
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xiv NOTATION

When we deal with spin-1/2 systems, we will commonly employ the notation
|+〉 and|−〉 to denote the spin up (m = +1/2) and spin down (m = −1/2) states,
respectively. Herem is the projection of the spin along the quantization axis.

The ubiquitous Clebsch-Gordan coefficients1 describe the connection between
the coupled basis|J,M〉 and the uncoupled basis|J1,M1〉|J2,M2〉 (where
J, J1, J2 are angular momenta andM,M1,M2 are the projections of the respective
angular momenta on the quantization axis):

|J,M〉 =
∑

M1,M2

C(J1, J2, J ;M1, M2,M)|J1,M1〉|J2,M2〉 (2.1)

|J1,M1〉|J2,M2〉 =
∑

J,M

C(J1, J2, J ; M1,M2,M)|J,M〉 . (2.2)

In the text we consistently use the notation:

C(J1, J2, J ; M1,M2,M) ≡ 〈J1,M1, J2,M2|J,M〉 , (2.3)

and employ the commonly used phase convention of Condon and Shortley (1970),
Edmonds (1996), and Sobelman (1992).

1 The Clebsch-Gordan coefficients are also referred to asvector-coupling coefficients, vector-
addition coefficients, andWigner coefficientsin the literature.


