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Problem 22

In order to thermalize a neutron it must undergo multiple elastic collisions.

Upon each interaction it will lose some energy which is transfered to the

scattering particle. We will first work out in general a formula describing

energy loss from multiple elastic scattering. Then examine the specific cases

of scattering from 2H, 12C, and 238U.

We begin the derivation using the basic principles, conservation of momentum

and energy,

m1~v1 = m1~v
′
1 + m2~v

′
2 (1)

m1~v
2
1 = m1~v

′2
1 + m2~v

′2
2 (2)

Where we define: m1 is the particle being moderated

m2 is the particle being scattered

~v is the velocity of the particle before interacting

~v′ is the velocity of the particle after interacting

For simplicity, we assume head-on collisions. We can divide the energy equa-

tion by the momentum equation to obtain

m2~v
′2
2

m2~v′
2

=
m1(~v

2
1 − ~v′2

1 )

m1(~v1 − ~v′
1)

(3)

~v′
2 =

(~v1 − ~v′
1)(~v1 + ~v′

1)

(~v1 − ~v′
1)

= ~v1 + ~v′
1 (4)

Now we can use this result to determine the energy lost by the particle being

moderated, m1 for each interaction. Using the conservation of momentum

equation

m1~v1 = m1~v
′
1 + m2~v1 + m2~v

′
1, (5)

~v′
1 = ~v1

(m1 − m2)

(m1 + m2)
. (6)
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The maximum energy loss, for a head on collision, per interaction is simply

δE =
m1

2
(v2

1 − v′2
1 ) =

m1

2
v2
1(1 −

(
(m1 − m2)

(m1 + m2)

)2

), (7)

δE = Einitial(1 −
(

(m1 − m2)

(m1 + m2)

)2

). (8)

We can rearrange this to find the final energy after n interactions

n =
log

(
Efinal

Einitial

)

log
((

m1−m2

m1+m2

)2) (9)

We then find that it takes the following number of collisions to moderate the

neutron down to thermal energy on the order of 1eV
40

:

scattering from 2H, n = 8

scattering from 12C, n = 54

scattering from 238U, n = 1074

Note: There is a more detailed way of making this calculation that is per-

formed in Krane, section 12.2. In Krane’s derivation he takes into account

the average energy loss per interaction whereas I treated every interaction as

a maximum energy loss.

Problem 23

The main thing to realize is that each fission event releases an average energy

of 200 MeV for a 235U produced chain reaction.

a) The average power of a research reactor is P = 10 MW. The number of

fission events per second is then

n =
P

E
=

10MW

200MeV
=

106W

200MeV (1.602×10−13J
1MeV

)
≈ 1017 1

sec
. (10)
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b) The fuel burning rate can then be determined as follows, using the mass

of 235U,

FuelBurningRate = 1017 1

sec
3.95 × 10−22g ≈ 10−4 g

sec
. (11)

Problem 24

The fuel used in nuclear reactors usually consists of a few percent of 235U

mixed with 238U. 235U has a half life of 7.038× 108 years and 238U has a half

life of 4.47 × 109 years. Since 238U is the most abundant element the initial

activity of the fuel is primarily due to the 238U.

When the fuel is being used in the reactor many radioactive isotopes are

formed from the fission fragments at a relatively high rate, calculated above

in question 23. These radioactive isotopes have various half-lives ranging

from seconds to millions of years. The final state of the burnt fuel is that it

is far more radioactive than the unburnt fuel. However the isotopes are now

primarily beta and gamma emitters. By examining figure 13.30 in Krane we

can get a rough idea of an effective half life for the burnt fuel. The initial

half life appears to be a couple of years. So lets calculate a ratio of activities

between the products and the fuel per cubic centimeter for 1 year of running,

A(products)

A(fuel)
=

λproductsNproducts

λfuelNfuel
. (12)

In 1 year of running there are approximately

Nproducts = 10−4grams

sec
× 3.154 × 107sec

6.022 × 1023

238grams
≈ 8 × 1024, (13)

fission products formed by burning a total of

Mass = 10−4grams

sec
× 3.154 × 107sec = 3154grams, (14)
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of uranium. The density of uranium is 19 grams per cubic centimeter so we

have burnt 166 cubic centimeters of fuel. Now we can determine the number

of products formed per cubic centimeter as 4.819 × 1022 atoms
cm3 . The number

of atoms of fuel per cubic centimeter can be determined from the density of

uranium and the molar mass,

Nfuel =
6.022 × 1023atoms

238grams
× 19

grams

cm3
= 4.807 × 1022 atoms

cm3
. (15)

Now we can determine the ratio of the activities per cubic centimeter,

A(products)

A(fuel)
=

ln2×1year
2years

4.8 × 1022atoms
ln2×1year

4.47×109years
4.8 × 1022atoms

=
4.47 × 109

2
≈ 2 × 109. (16)

So we can conclude that the products of the nuclear reactor are approxi-

mately 109 times more radioactive than the initial fuel. Also note that in the

end the ratio of activities is dominated by the ratio of the half lives of the

fuel and products and is independent of the power of the reactor.

More information on this topic can be found on the world wide web at

www.incs.anl.gov as well as in Nuclear Energy by R.L. Murray, 1980.

Problem 25

We have an infinite spherically symmetric potential well with radius, a =

5 fm. Because of the spherical symmetry, our main concern is solving the

radial Schroedinger equation which is

− h̄2

2m

(
d2R(r)

dr2
+

2

r

dR(r)

dr

)
+

(
l(l + 1)h̄2

2mr2

)
R(r) = ER(r). (17)

In the region where the potential is zero, the solutions to the radial equation

are the spherical Bessel functions from M. Abramowitz and I.A. Stegun,

Handbook of Mathematical Functions (New York: Dover, 1965):

j0(kr) =
sin(kr)

kr
, (18)
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j1(kr) =
sin(kr)

(kr)2
− cos(kr)

kr
, (19)

j2(kr) =
3sin(kr)

(kr)3
− 3cos(kr)

(kr)2
− sin(kr)

kr
, (20)

j3(kr) =
(

15

(kr)4
− 6

(kr)2

)
sin(kr) +

(
15

(kr)3
+

1

kr

)
cos(kr). (21)

We must use these function combined with the boundary condition and the

energy relation,

E =
h̄2k2

2m
, (22)

to determine the energy of the first three radial excitations for l = 0,1,2,and

3.

At the boundary, a = 5 fm, the wave function must go to zero,

jl(ka) = 0. (23)

We must look up the first three zero crossing values in order to determine

the value of k so we can calculate the energy of each excited state. From

the Handbook of Mathematical Functions edited by M. Abramowitz and I.A.

Stegun, 1965, we have,

for l = 0 the first three zeros occur at: ka = 3.14, 6.28, 9.42,

for l = 1 the first three zeros occur at: ka = 4.49, 7.73, 10.90,

for l = 2 the first three zeros occur at: ka = 5.76, 9.09, 12.32,

for l = 3 the first three zeros occur at: ka = 6.99, 10.41, 13.70.

From these values we can now calculate k and thus the energy of each state.

The energy levels are,

E0 = 8.20, 32.79, 73.77 MeV,

E1 = 16.76, 49.68, 98.78 MeV,

E2 = 27.58, 68.69, 126.19 MeV,
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E3 = 40.62, 90.09, 156.04 MeV.

Now what are the degeneracies of these levels? The complete wave function

for the states also includes the spherical harmonics. Therefore the degen-

eracy of each level is identical to that of angular momentum in quantum

mechanics. The degeneracies are then:

for l = 0 degeneracy = 1,

for l = 1 degeneracy = 3,

for l = 2 degeneracy = 5,

for l = 3 degeneracy = 7.

Of course we are ignoring the spin of the nucleon in this discussion of degen-

eracy.

Problem 26

The shell model is useful at predicting the ground state spin state of

nuclei that have a single unpaired nucleon which lies above a closed shell.

Alternatively, if a shell is one nucleon short of being full, we can consider it

as a ”hole.” By filling in the levels on the shell model diagram on page 123

figure 5.6 of Krane, in some cases, we can determine the spin of the ground

state.

Examining the list, we see that there are actually only four cases where

we can make a prediction in this case:

17F : Z = 9, N = 8, IShell = 5/2, IExperiment = 5/2

39K : Z = 19, N = 20, IShell = 3/2, IExperiment = 3/2 (this is a case with

a hole)

87Rb : Z = 37, N = 50, IShell = 5/2, IExperiment = 3/2 (what happens here
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is that the 1f shell fills first, leaving a hole in the 2p shell. Why this is so is

beyond the material that we covered).

171Y b : Z = 70, N = 101, IShell = 5/2, IExperiment = 1/2 (this nucleus has

A beyond the range of A < 150, where the model is expected to work well;

see Krane, p. 125).

In conclusion we have been able to correctly predict a couple of the ground

state spins, but our simple-minded approach should be applied with caution.

THANK YOU FOR THE GREAT SEMESTER !
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