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Problem 14

In making a ”back of the envelope” calculation we must simplify the existing

theory and make appropriate assumptions. The transition rate for gamma

decay is given by, Krane equation 10.10,

λ(σL) =
2(L + 1)

εoh̄L[(2L + 1)!!]2

(
ω

c

)2L+1

[mfi(σL)]2. (1)

We are interested in electric quadrupole transitions therefore, L = 2. Assum-

ing the transition is due to one nucleon changing from one state to another

in the shell model we can simplify the calculation. First of all the spherical

harmonic for quadrupole radiation is,

e(3z2 − r2). (2)

We can then calculate the radial part of the transition probability. Assuming

the wavefunction of the initial and final state are constant within the nuclear

radius and zero elswhere,
∫ R
0 r2rLdr∫ R

0 r2dr
=

3

L + 3
RL. (3)

The other crucial approxiamtion is to say that the integral over spherical

harmonics gives a result on the order of unity. Now we can see that

[mfi(σL)]2 = [mfi(EL)]2 =
(

e3

L + 3

)2

R2L (4)

Using L = 2 our final equation is then

λ(E2) =
2(3)

εoh̄2[(2(2) + 1)!!]2

(
E

h̄c

)5(e3

5

)2

R4. (5)

We can use R = Ro A
1
3 and after some algebra we obtain,

λ(E2) ≈ 108E5A
4
3 , (6)
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where λ(E2) is in sec−1 and E is in MeV. For a nucleus with A = 50 and a

gamma ray of 2 MeV the rate is 5 × 1011 sec−1.

Problem 15

All quantities are calculated in femtometers for comparison.

a) Nuclear radius, using A = 50 as an example,

r = 1.2fm × A
1
3 ≈ 5fm. (7)

b) Compton wavelength of an electron,

λCompton =
h

mc
=

6.626 × 10−34J − sec

(9.109 × 10−31kg)(2.9979× 108 m
s
)

= 243fm. (8)

c) Reduced photon wavelength for Eγ = 1 MeV,

λγ

2π
=

hc

2πEγ
=

(6.626 × 10−34J − sec)(2.9979 × 108 m
s
)

2π(1MeV )(1.602 × 10−13 J
MeV

)
= 197fm. (9)

d) The de Broglie wavelength of an electron with kinetic energy Te = 1 MeV.

Note first of all that the kinetic energy is related to the momentum by:

p =

√
T 2

e − m2c4

c
. (10)

Substituting into de Broglie’s equation for wavelength,

λ =
h

p
=

hc√
T 2

e − m2c4
=

(4.136 × 10−21MeV − sec)(2.9979 × 108 m
s
)√

(1MeV )2 − (0.511MeV )2
= 1443fm.

(11)

e) A typical de Broglie wavelength of an α particle. Using an α particle with

kinetic energy Te = 4 MeV for example we find,

λ =
h

p
=

h√
2mTe

=
6.626 × 10−34J − sec√

2(6.6466× 10−27kg)(4MeV )(1.602 × 10−13 J
MeV

)
= 7fm.

(12)
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Observations: The more massive the particle, the shorter the wavelength.

The more energetic the particle is, the shorter the wavelength is. Which is

expected since E2 = p2c2 + m2c4.

Problem 16

All information for this problem can be found in the Table of Isotopes.

a) The excited state of 137Ba is Jπ = 11−
2

while the ground state is Jπ =

3+

2
. Using angular momentum selection rule we can see that the allowed

multipolarity are L = 4,5,6, and 7. The parity also changes in this decay,

and thus we know that electric transitions must be odd L and magnetic

transitions are even L from the rules

π(EL) = (−1)L and π(ML) = (−1)L+1. (13)

Summarizing we can say that we have the following transitions; M4, E5, M6,

and E7.

Note that M4 radiation is 100 less likely than E4 radiation. Also each increase

in multipole order corresponds to a reduction in strength by a factor of

approximately 10−5. Therefore the M4 transition is a factor of 1000 times

more likely than the E5 transition and is the dominant multipole. b) Using

the internal conversion plots for Z = 50 we can find the following internal

conversion coefficients for the M4 transition;

K-shell = 0.09

L1-shell = 0.01

L2-shell = 0.002

L3-shell = 0.0015

Adding up these results we get a total internal conversion coefficient λe =
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0.1035. Therefore the branching ratio for internal conversion in 137Ba∗ →
137Ba is 0.1035. Experimentally this branching ratio is 0.0916 from the Table

of Isotopes. So we are off by about 10 % by using the theoretical curves for

Z = 50.

Problem 17

We can determine the selection rules by calculating the matirx elements using

the two operators defined in the problem.

The Fermi operator is used to find,

< TfTofJfMf |OF |TiToiJiMi > (14)

=< TfTofJfMf |GV

A∑
j=1

t∓(j)|TiToiJiMi > (15)

= GV

√
Ti(Ti + 1) − Toi(Toi ∓ 1)δJf Ji

δMf Mi
δTf Ti

δTof (Toi∓1). (16)

Examining this equation we find that

Jf = Ji (∆J = 0), (17)

Tf = Ti 6= 0 (∆T = 0, butTi = 0 → Tf = 0forbidden), (18)

T0f = T0i ∓ 1 (∆T0 = 1). (19)

Now examining the Gamow-Teller operator we have,

< TfTofJfMf |OG−T |TiToiJiMi > (20)

=< TfTofJfMf |GA

A∑
j=1

σ(j)t∓(j)|TiToiJiMi > (21)
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We arrive at similar rules except that the spin component allows for more

possible transitions,

∆J = 0, 1 butJi = 0 → Jf = 0forbidden, (22)

∆T = 0, 1 butTi = 0 → Tf = 0forbidden, (23)

T0f = T0i ∓ 1 (∆T0 = 1). (24)

The reader is referred to section 5.6 of Introductory Nuclear Physics by

Samuel Wong for a more detailed discussion.
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