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Problem 5

Let us start with order of magnitude estimates. We expect the quadrupole
moment to have the form eQ ~ er?. Well r ~ R,A% if we consider the
valence charges are the source of the quadrupole moment. We can compute
r and find that for light nuclei e) ~ 6 x 107*%em? and for heavy nuclei
e@ ~ 50x107*°em?. Using the units of barns we can say that the quadrupole
moment should fall somewhere in a range of 0.06 to 0.5 eb if it is present at
all.

Now we will calculate the quadrupole moment, but first we should have
an idea of the boundary conditions for our equation.
Assume that b is along the z-axis, and that the ellipsoid is obtained by
revolution around the z-axis. Consider the following two limiting cases:
1) If we set b = 0 we have a pancake-like distribution. This would give us a
quadrupole moment eQ ~ -qa?, where q is the total charge.
2) If we set a = 0 the charges are concentrated along the z-axis. We would
then get a quadrupole moment eQ) ~ gbZ.
3) For a = b, we have a sphere and e = 0.
Our solution must match these limiting cases.

For calculating the quadrupole moment we use the following equation

e@) = /(322 —rHp(a")d’z’. (1)

Working in cylindrical coordinates and pulling out the constant charge den-

sity we have
eQ) = ,0/(322 — r3)rdrdédz. (2)

The integration limits for the ellipsoid can be written as

d:0—=2r z:=b—=b 1r:0—=1. (3)



We cn find 7’ from the equation of an ellipsoid

r'=a(l — —)% (5)

We must be careful to substitute in r in cylindrical coordinates for r, which

is the distance from the origin in equation (1) and equation (2),

(2) =22 42, (6)

7

Then we have to solve the following integral

eQ) = /b:_b /7’:0 /q:;(ZZQ — r¥)rdédrdz. (7)

Integrating over r and ¢ we obtain

()P o

Using Mathematica, Maple, or anything else you like using to solve this we
find the quadrupole moment to be (can also be done by hand without much

work)
8 pa2b
Q=== (b — ), (9)

or replacing the charge density by the total charge q we have

q
- _ 1 1
P %mﬂb’ (10)
2,5 2
Q= - a?) ()

Which satisfies our limiting cases stated above.
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Problem 6

The formation of daughter nuclei and their subsequent decay is the topic of
this problem. The parent nuclei are of type A. These decay to produce nu-
clei B, the daughter nuclei, which are also unstable. The daughter can then
decay to stable nuclei C. We are examining one of the simpler examples of
a nuclear decay chain. A more complicated example would be the decay of
Thorium-228 in which there are about eigth decay steps before a stable nu-
cleus is encountered. The decay chain also includes alpha, beta, and gamma
decay. The understanding of nuclear decay chains was recently used by my
colleagues at the 88”7 cyclotron to identify the new elements 118 and 116, as
yet unnamed.

a) First we will derive the equation governing the activity of the daughter
nuclei. We begin with some basic definition of exponential decay. The parent

nucleus decays by the following relation
Ny(t) = Ne 4, (12)
Now, for the number of the daughter nuclei we can write
dNp = AaNadt — ApNpdt. (13)

By guessing at a solution to the above differential equation and using the
fact that at t = 0 no daughter nuclei exist we can solve the equation for the
number of daughter nuclei present as a function of time. Another way to
solve the equation would be to use the general rule for the solution of inho-
mogeneous differential equations. We find that a good guess for a solution
is

NA == 016_/\At + 026_/\375. (14)



Along with the initial condition Ng(0) = 0 we find C; = -C3. Now we have
Ng = Cre Mt — Che™ 8L, (15)

Using the above equation for Ng we find
—2aC1 + AgCr = AN, — Ag(Cy — CY). (16)

Solving for C; we can then find Np
A4

=N, —— 1

“ Ag — A4 (17)
A
Nu(t) = N, <7A)(6_“t _ ey, (18)
A — A4
The activity of the daughter is then given by the following equation
ABA
Ap(l) = AgNg(t) = N(ﬂ) (et — gmty, (19)
A — A4

We now need to substitute in the lifetimes so we can see how the activity
depends on the half-life of the parent and daughter nuclei.

A = In(2) Ay — In(2) (20)

TA B

The activity of the daughter is now represented by

Ag(t) = AgNg(t) = No< n(2) )(e—%f ) (21)

TA — 7B
b) Now we will examine the various cases mentioned at the beginning.

case 1 74 > 718

Here we see that the activity is given by

As(0) = N, (WD) (- 5 (22)

TA
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This behaviour is shown graphically on page 170 in Krane Fig. 6.5. In this
case the parent acts as a source that eventually stops leaving the daughter
nuclei to exponentially decay. The turning point at the top is called the
secular equilibrium value. This is when the decay rate equals the production
rate.

case 2 74 € TB

We now find that the activity of the daughter is

Ag(l) = N0<ln(2))6_%t. (23)

B
So we will see a rapid rise in the activity of the daughter initially which
corresponds to the short lifetime of the parent. Then the activity is described
by the above equation dominated by the lifetime of the daughter.
case 3 T4 & Tgp
If the two half-lifes are almost equal we have to make a power series
expansion of the exponential terms. We end up only keeping the first non-

zero value and we set 7 = 74 = 75 to get

A(l) ~ No<ln(2))2t. (24)

T

This result shows that the acivity of the daughter increases linearly in time.
However it is only a rough approximation as we omitted the higher order
terms. If we included all the terms we would see that the long term behaviour

will reduce the activity of the daughter down to zero.
Problem 7

Carbon dating is a technique used to estimate the age of a once living object.

The technique makes use of the knowledge that there is a relatively constant



ratio of C to 2C in the Earth’s atmosphere. The carbon is found in the

atmosphere in the form of CO,. The carbon is removed from the atmosphere

by plants and is used for growth. The percentage of 13C is 1.11% the rest

being 2C, 98.89%. Once a plant dies it no longer fixes carbon from the

atmosphere and the amount present gradually decays away. The half-life

of 14C is 5730 years. By comparing the specific activity of two different age

materials we can determine the age of one piece relative to the other.

Here

we have a sample that has a specific activity of 5.3 dpm that is 0 years old

and another which has a specific activity of 2.1 dpm. So how old is the wood?

We set the specific activities equal to each other

in2 in2
—n2y — 24

T1
Ale 2 = A2€ 2

Using t; = 0, Ay = 2.1, and Ay = 5.3 we find

_In2 15

21 =53 %

Solving for t5 we find that the wood is 7653 years old.

(25)

(26)



Problem 8

a) Alpha decay can only occur if the ) value
Q:(mX—mX/—ma) (27)

for a given nucleus, X, is positive. When Q) is positive energy is released in
the form of kinetic energy of the alpha particle, o, and the recoiling nucleus,
X’. By examining the  value for alpha decay around N=56 one finds that
the Q value is negative. Thus it is uncommon for for these nuclei to undergo
alpha decay.

Another way to see this is to examine the graph on page 67 in Krane. There
the binding energy per nucleon is at a maximum for nuclei around N=56. It
would not be energetically favorable to form an alpha particle and leave the
newly formed nucleus in a less bound final state.

b) A similar argument holds here. The Coulomb barrier is lower for proton
emission than for alpha emission, roughly half the size. However the Q
value is still negative for proton emission in general thus forbidden by energy

conservation.



