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Abstract

We present the results of an ongoing investigation designed to measure the for-

bidden magnetic dipole transition amplitude for the 6s2 1S0 → 6s5d 3D1 transition (408

nm) in atomic ytterbium. The transition is excited in an effusive atiomic beam with a

C.W. laser in the presence of crossed D.C. electric and magnetic fields. The fields are ar-

ranged to provide interference between the magnetic dipole transition and a Stark-induced

transition caused by the electric field. This interference term is separated from the larger

Stark-induced transition by switching the direction of the electric field. The transition is

observed through fluorescence in the 6s6p 3P1 → 6s2 1S0 decay channel at 556 nm. Prelim-

inary measurements allow us to place an upper limit on the 6s2 1S0 → 6s5d 3D1 magnetic

dipole amplitude of M1 < 3 × 10−3 µB .
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Chapter 1

Introduction

1.1 Atomic Parity Nonconservation

Within an atom the dominant interactions determining the atomic structure are

the electromagnetic interactions between the nucleus and the surrounding electrons. These

interactions, like all electromagnetic interactions, conserve parity. That is to say, the

interactions are unchanged under mirror reflection. The concept of parity can be described

quantum mechanically by introducing a parity operator, Π, defined by the relation

〈−→r |Π|ψ〉 = 〈−−→r |ψ〉 (1.1)

where |ψ〉 describes the wave function of some system and |−→r 〉 denotes the position basis

vectors. Physically this corresponds to a mirror reflection of space, followed by a rotation

of 180◦ about an axis perpendicular to the plane of reflection. To say that the electro-

magnetic interaction conserves parity means the Hamiltonian describing the interaction

commutes with the parity operator. Thus, there exists a basis of vectors in state space



which are eigenstates of both the Hamiltonian and the parity operator. Therefore, given

the appropriate basis, one can classify the energy eigenstates according to the eigenvalues of

the parity operator. Because Π2 returns the wave function to its initial state, the parity op-

erator has only two possible eigenvalues, ±1. A state |ϕ〉 is classified as odd if Π|ϕ〉 = −|ϕ〉

and even if Π|ϕ〉 = +|ϕ〉 [1].

The overwhelming dominance of the electromagnetic interaction in the Hamilto-

nian governing the atomic structure allows the classification of atomic states according to

their parity. However, this classification is only approximate due to the presence of an-

other, much smaller, interaction between the nucleus and the surrounding electrons due to

the weak force. In the Standard Model this interaction occurs via the exchange of virtual

Z0 bosons between the nucleus and the electrons. This interaction does not conserve parity.

Consequently, as a whole, the atomic Hamiltonian does not conserve parity.

Because of the short range of the weak force, this interaction can be well approxi-

mated as a point interaction. It is shown in reference [2] that in the limit of an infinitely

heavy Z0 boson and in the nonrelativistic limit, the parity violating part of the potential

has the form

Vp.v. =
GF

4
√

2me

[−→σ · −→p δ3 (−→r ) + δ3 (−→r )−→σ · −→p ]
QW

+ terms involving nuclear spin, (1.2)

where −→σ , −→p , are the spin and momentum operators, me is the mass of the electron, GF

is the Fermi coupling constant, δ3 (−→r ) is the three-dimensional Dirac delta function, and

QW is the weak charge. The weak charge plays a role in weak interactions analogous to

the role played by the electric charge in electromagnetic interactions and can be expressed



as

QW = − [(
4 sin2 θW − 1

)
Z +N

]
, (1.3)

where Z is the atomic number, N is the number of neutrons in the nucleus, and θW is the

weak-mixing angle [2]. The parity-violating property of the potential arises from the −→σ ·−→p

term. Since −→σ does not change sign under parity while −→p does, −→σ · −→p forms an invariant

that it is odd under parity. This means the reflection of space changes the interaction.

This unique parity nonconserving feature allows this interaction to be separated from the

electromagnetic interaction, allowing the study of neutral weak currents using atoms.

Because of the small size of this interaction, its addition to the atomic Hamilto-

nian can be accurately treated using perturbation theory. Since the interaction does not

conserve parity, the eigenstates of the perturbed Hamiltonian cannot be strictly classified

as even or odd. That is to say, the interaction mixes atomic states (as determined by the

electromagnetic interaction) of opposite parity. This mixing leads to a slight modification

of the optical properties of the atom. In particular, the parity-selection rule for electric

dipole, E1, transitions, which states that E1 transitions can only occur between states of

opposite parity, is no longer strictly obeyed. Thus, a small E1 transition amplitude can

be present between two atomic states with the same nominal parity. As a consequence of

the energy denominator which arises in first order perturbation theory, states of opposite

parity which are close in energy will have the strongest mixing.

The magnitude of the parity-nonconserving effect is extremely small and it can-

not be observed directly. However, the parity-nonconserving amplitude can be observed

through interference with a larger, parity-conserving amplitude. One way to do this is



to apply a static electric field to the atoms, which Stark-mixes the atomic states. The

perturbation Hamiltonian for a static electric field can be expressed as

HStark = −−→
D · −→E (1.4)

Where −→
D is the electric dipole operator and −→

E is the static electric field. Using first order

perturbation theory the eigenstates of the perturbed Hamiltonian,
∣∣ϕ1

n

〉
, become

∣∣ϕ1
n

〉
=

∣∣ϕ0
n

〉 −−→
E ·

∑
i, m

〈
ϕ0

m

∣∣∣−→D ∣∣∣ϕ0
n

〉
En − Em

∣∣ϕ0
m

〉
. (1.5)

where the sum runs over all of the eigenstates of the unperturbed Hamiltonian
∣∣ϕ0

m

〉
. It

is important to note that this perturbation is odd under parity. This means that the

Hamiltonian due to the electric field only couples opposite parity states. Consequently, if

|ϕ〉 and |ψ〉 are eigenstates of parity with the same eigenvalue,

〈ψ |HStark|ϕ〉 = 0 (1.6)

Thus the sum over the energy eigenstates,
∣∣ϕ0

m

〉
, in equation 1.5 contains only states with

parity opposite to that of the unperturbed state of interest.

Because it mixes states of opposite parity, a static electric field can induce an E1

amplitude between states which have the same parity in the absence of an electric field.

This amplitude, known as a Stark-induced amplitude, is proportional to the magnitude of

the electric field. Consequently, the corresponding transition probability is proportional

to the square of the electric field. With proper geometry, the E1 amplitude due to parity

nonconservation can be combined with the Stark-induced amplitude so that the transition

rate contains an interference term. This interference term is proportional to both the

parity nonconservation amplitude and the Stark-induced amplitude, and is therefore linear



in the electric field. Although the contribution from the interference term is smaller than

the contribution from the pure Stark-induced component by a factor of 2E1PNC
E1Stark

, the sign

of the interference term changes with a reversal of the electric field while the pure Stark-

induced component does not. Thus, changing the direction of the electric field creates

an observable asymmetry in the transition probability. This allows for the separation of

the component of the transition probability resulting from the interference between the

Stark-induced amplitude and the parity nonconserving amplitude.

1.2 Parity Nonconservation in Ytterbium

Atomic parity nonconservation has been successfully observed in many atoms (see

reference [3] for a general review). Recently, the high-precision results in thallium [4] and

cesium [5] have demonstrated that atomic parity nonconservation experiments provide a

unique test of the electroweak theory within the Standard Model. Indeed, the precision

of these experiments, ˜1% and ˜0.3% respectively, has exceeded the theoretical knowledge

of the atomic wave functions and the interpretation of the results of these experiments is

currently limited by theory.

In [6] a parity nonconservation experiment using the 4f146s2 1S0 → 4f146s5d 3D1

transition in ytterbium was suggested (see figure 1.1). The transition is a highly forbid-

den transition between two states of even parity. The effect of the parity-nonconserving

interaction is to mix states of odd parity with the 4f146s5d 3D1 state (see equation 1.2) .

The mixing is dominated by the 4f146s6p 1P1 state because of the small energy difference

between it and the 3D1 state, 589 cm−1, and the configurations present in the 1P state.



4f14 6s5d 3D3

4f14 6s6p 1P1

4f14 6s2 1S0

4f14 6s6p 3P0

Even Parity Odd Parity

4f14 6s6p 3P1

4f14 6s6p 3P2

4f14 6s5d 3D2

4f14 6s5d 3D1 4f13 5s6s2 (7/2, 3/2)2

PNC and

Stark Mixing

408 nm

556 nm

Figure 1.1: Low-lying energy levels in ytterbium.



The enhancement resulting from the small energy difference leads to an estimate of a parity

nonconserving amplitude that is ˜100 times larger than the amplitude previously studied

in Stark-interference experiments in cesium and ˜10 times larger than that in thallium [6].

Another important advantage of ytterbium stems from the fact that ytterbium has seven

stable isotopes, (176Yb, 12.73% natural abundance; 174Yb, 31.84%; 173Yb, I = 5
2 ,16.08%;

172Yb, 21.82%; 171Yb, I = 1
2 ,14.27%; 170Yb, 3.03%; 168Yb, 0.135%). Since the value

of the weak charge depends upon the number of neutrons in the nucleus (equation 1.3),

the parity nonconserving amplitudes are different for the different isotopes. Comparing

the parity nonconserving effect for different isotopes would remove the dependence upon

knowledge of the atomic wave functions [7]. Thus, a parity nonconservation experiment

in ytterbium provides an opportunity to improve the interpretation of atomic parity non-

conservation without improving theoretical knowledge of the atomic wave functions. The

possibility of performing a parity nonconservation experiment it ytterbium has motivated

detailed theoretical and experimental study of the 4f146s2 1S0 → 4f146s5d 3D1 transition

[8] [9] [10].

1.3 M1 Amplitude

Although an E1 transition is forbidden because of parity (ignoring the small parity

nonconserving amplitude), parity does not forbid a magnetic dipole, M1, transition. The

presence of a strong M1 amplitude, coupled with apparatus imperfections, could mimic the

parity-nonconserving amplitude and lead to significant systematic effects in a parity non-

conservation experiment using the method of Stark interference. It is therefore important



to know the size of the M1 amplitude, or at least to have a sufficiently stringent upper limit,

in order to evaluate its effect on a parity nonconservation experiment of the kind proposed

in [6]. The current effort to measure the M1 amplitude of the 6s2 1S0 → 6s5d 3D1

transition is the subject of this thesis.
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Chapter 2

Properties of the

6s2 1S0 → 6s5d 3D1 Transition

2.1 Energy Shifts for the 6s2 1S0 → 6s5d 3D1 Transition

2.1.1 Isotope Shifts and Hyperfine Structure

The differences in the masses and volumes of the seven different isotopes of ytter-

bium lead to slight changes in the energies of the atomic states. In addition, the presence of

nonzero nuclear spin in the isotopes with an odd number of nucleons leads to energy shifts

due to the hyperfine interaction between the electrons and the nucleus. Consequently,

a given atomic transition will occur at slightly different frequencies for each of the differ-

ent isotopic and hyperfine components. The isotope shifts and hyperfine structure of the

1S0 → 3D1 transition was studied in this laboratory last year [10]. This measurement was

done by exciting the 1S0 → 3D1 transition in an effusive atomic beam in the presence of a



Isotope Relative Shift in MHz
170 2551.3(20)
171 2039.9(14)
172 1110.1(20)
173 624.0(20)
174 0
176 -1060.9(20)

Hyperfine Structure Constants
171(I=1/2) A = −2042.2(19)
173(I=5/2) A = 562.8(5) B = 337.2(19)

Table 2.1: Experimental values for the isotope shifts and hyperfine structure constants for
the 6s2 1S0 → 4f146s5d 3D1 transition

static electric field with a frequency scannable CW laser at 408 nm. The transition was de-

tected through fluorescence from the second stage in the cascade decay of the 6s5d 3D1 →

6s5d 3P1 → 6s2 1S0 transition at 556 nm (figure 1.1). The results of this measurement

are summarized in table 2.1, where the energy shifts of the hyperfine structure are given in

terms of the hyperfine structure constants A and B. The energy shift due to the hyperfine

structure can be computed according to

∆EH.F. =
1
2
AC +

B

8(2I − 1)J(2J − 1)
[3C(C + 1) − 4I(I + 1)J(J + 1)] , (2.1)

where

C = F (F + 1) − J(J + 1) − I(I + 1), (2.2)

and F is the total angular momentum of the atom, I is the angular momentum of the

nucleus, and J is the total electronic angular momentum [11]. The isotope shift for 168Yb

was not measured because its isotopic abundance was too small for the transition to be

observed.



2.1.2 Stark Shifts

In addition to the hyperfine structure and isotope shifts, there is a shift in the

energy for the atomic states when a D.C. electric field is applied to the atoms, known as

the Stark shift. The relative Stark shifts of the 1S0 and 3D1 states were also measured in

this laboratory [10]. The results of this measurement are

α0

(
3D1

) − α0

(
1S0

)
= −21.6(8) kHz/(kV/cm)2

α2

(
3D1

)
= 7.0(10) kHz/(kV/cm)2, (2.3)

where α0(3D1) and α0(1S0) are the scalar Stark polarizabilities of the 3D1 and 1S0 states

and α2(3D1) is the tensor Stark polarizability of the 3D1 state. The energy shifts for the

MJ magnetic sublevels of the even isotopes, I = 0, are given by [12]

∆E(γJMJ ) = −1
2

(
α0 (γJ) + α2 (γJ)

3M2
J − J (J + 1)
J (2J − 1)

)
, (2.4)

where J is the electronic angular momentum of the state and γ represents all other quantum

numbers required to specify the state. For the odd isotopes the energy shifts for the MF

magnetic sublevels are given by

∆E(γFMF ) = −1
2

(
α0 (γF ) + α′

2 (γF )
3M2

F − F (F + 1)
F (2F − 1)

)
, (2.5)

where

α0 (γF ) = α0 (γJ) (2.6)

and

α′
2(γF ) = (−1)(I+J+F )

√
F (2F − 1) (2F + 1) (2J + 3) (2J + 1) (J + 1)

(2F + 3) (F + 1) J (2J − 1)

×
{
F J I

J F 2

}
α2(γJ), (2.7)



and F is the total angular momentum of the atom, J is the electronic angular momentum,

I is the nuclear spin, and
{
F J I

J F 2

}
is the Racah six-J symbol.

2.1.3 Magnetic Field Splitting

In order to measure the M1 transition amplitude it is necessary to separate the

different magnetic components by applying a static magnetic field (see chapter 2). This

also results in shifts of the energy levels due to the Zeeman effect. For the even isotopes

the low-field Zeeman splitting is given by

∆EZeeman(3D1,m = ±1) = ±g
(
3D1

)
~

µB
−→
J · −→B , (2.8)

where µB is the Bohr magneton, −→J is the electronic angular momentum, and g
(
3D1

)
is

the g-value of the 3D1 state[1]. The g-value of the 3D1 state is [13]

g
(
3D1

)
= 0.50. (2.9)

For the odd-isotopes the hyperfine splitting is larger than the Zeeman shift required to

resolve the magnetic sublevels. However, because the hyperfine splitting is not overwhelm-

ingly dominant, a numerical calculation was performed in which the effects of the hyperfine

splitting and the applied magnetic field were added simultaneously as a single perturbation

to the atomic Hamiltonian. The results of such a calculation, including the relative in-

tensities is shown in figure 2.1. The relative intensities were calculated assuming a static

electric field in the z-direction and light polarized in the x-direction. With this geometry,

the MJ = 0 sublevel of the even isotopes is not excited and only the MJ = ±1 sublevels

appear in figure 2.1 (see section 2.3). For simplicity, the Stark shifts were not include in



Figure 2.1: Theoretical calculation of the Zeeman splitting for 75 Gauss field and the zero
field splitting. The heights indicate the relative intensities.

the calculation. Because the relative Stark shifts between the hyperfine components are

typically 20 MHz, its inclusion would not significantly alter the results of the calculation.

2.2 The M1 Transition

Although an M1 amplitude for the 6s2 1S0 → 6s5d 3D1 transition is not forbidden

by parity, it is still highly suppressed due to other selection rules. Indeed, it is forbidden

by both radial wave function and angular momentum considerations. M1 transitions occur

through the coupling of the magnetic dipole moment of an atom with the magnetic field of



the electromagnetic wave. Thus, the Hamiltonian governing the interaction does not affect

the radial wave function of the atom or the total orbital angular momentum and total spin,

but can only change the projection of the angular momentum and spin along a chosen axis.

Because radial wave functions with different principal quantum numbers are orthogonal

within the one-electron approximation, M1 transitions are forbidden between states with

differing principle quantum numbers [14]. Similarly, wave functions with differing orbital

angular momentum or differing spin are also orthogonal, making M1 transitions between

such states forbidden.

The first of these selection rules breaks down if the one-electron configurations are

significantly altered by the presence of the other atomic electrons, resulting in configuration

mixing. Because this effect only concerns the electron configurations, it cannot mix states

of with different orbital angular momentum and spin [14]. However, the presence of the

spin-orbit interaction can mix states with different orbital angular momentum and spin,

but cannot mix states with different configurations [15]. Thus, it is necessary to have both

configuration mixing and spin-orbit mixing in both the 1S0 and the 3D1states if a nonzero

M1 amplitude is to exist [6]. By considering the possible states that could lead to a finite

transition probability, the M1 transition amplitude was estimated in reference [6] to be:

M1 / 10−4µB , (2.10)

where µB is the Bohr magneton.

The M1 | 1S0,M = 0〉 → | 3D1,M 〉́ transition amplitude for the even isotopes, all



of which have nuclear spin, I, equal to zero, can be written as

M1Ḿ = −→ß · 〈1S0, M = 0 |−→µ | 3D1, M
〉́

=
∑

q=±1,0

(−1)q ß−q

〈
1S0, M = 0 |µq| 3D1, M

〉́
(2.11)

where −→ß is the magnetic field of the light, −→µ is the electronic magnetic moment, ßq and

µq are the projections of the electric field and magnetic moment along the spherical basis

vectors

ê−1 =
1√
2

(x̂− i ŷ)

ê0 = ẑ (2.12)

ê+1 = − 1√
2

(x̂+ i ŷ) ,

and M and M´are the projections of the total angular momentum J , J́ , of the 1S0 and 3D1

states along the z-axis. Applying the Wigner-Eckhart theorem to equation 2.11 gives [14]

M1Ḿ =
∑

q=±1,0

(−1)q

(
0 1 1
0 q M ′

)
ß−q

(
1S0 ‖µ‖ 3D1

)
, (2.13)

where
(
1S0 ‖µ‖ 3D1

)
is the reduced matrix element and

(
0 1 1
0 q M ′

)
is the Racah three-

J symbol. Using equation 2.12 to rewrite equation 2.13 in the more familiar Cartesian

coordinates and evaluating the three-J symbols gives

M1Ḿ = 1√
6
[ßx + i ßy]

(
1S0 ‖µ‖ 3D1

)
δḾ,−1

− 1√
6
[ßx − i ßy]

(
1S0 ‖µ‖ 3D1

)
δḾ,+1

− 1√
3
ßz

(
1S0 ‖µ‖ 3D1

)
δḾ,0

(2.14)

where ßi is the projection of the vectors −→ß along the Cartesian basis vectors and δḾ,q is

the Kronecker Delta.



The transition amplitudes for isotopes with nonzero nuclear spin, I, between states

with total angular momentum, F and F́ , can be related to the reduced matrix element above

according to [14]

(
1S0, I, F ‖µ‖3D1, I, F́

)
= (−1)I+F́+1 (

1S0 ‖µ‖ 3D1

) ×
√

(2F + 1) (2F́ + 1)
{

0 F I

F́ Í 1

}
. (2.15)

The Wigner-Eckhart theorem can then be used to find the transition amplitude between

states with specific projections of the total angular momentum along the z-axis. The results

of such a calculation for the hyperfine components of the two odd isotopes are

For 171Yb :
(

1S0, I =
1
2
, F =

1
2
‖µ‖3D1, I =

1
2
, F́ =

1
2

)
= 0.816

(
1S0 ‖µ‖ 3D1

)
For 173Yb :

(
1S0, I =

5
2
, F =

5
2
‖µ‖3D1, I =

5
2
, F́ =

3
2

)
= 1.155

(
1S0 ‖µ‖ 3D1

)
:

(
1S0, I =

5
2
, F =

5
2
‖µ‖3D1, I =

5
2
, F́ =

5
2

)
= 1.414

(
1S0 ‖µ‖ 3D1

)
:

(
1S0, I =

5
2
, F =

5
2
‖µ‖3D1, I =

5
2
, F́ =

7
2

)
= 1.633

(
1S0 ‖µ‖ 3D1

)
(2.16)

Thus, a measurement of the M1 amplitude in one of the even isotopes allows

calculation of the M1 amplitude in all of the other isotopes and hyperfine components.

2.3 The Stark-Induced Transition

The M1 amplitude as estimated in [6] is too small to be observed directly. This

difficulty can be overcome by interfering the small M1 amplitude with a larger amplitude

created by a static electric field in a manner similar to the method described in the intro-

duction for interfering the parity nonconservation amplitude.



Because of the closeness in the energy of the 6s5d 3D1 and 6s6p 1P1 states the

sum in equation 1.5 is dominated by the 6s6p 1P1 state [6]. To a good approximation

equation the perturbed 6s5d 3D1 state can be written as

∣∣∣^3D1,M
〉

=
∣∣3D1,M

〉 − ∑
M

〈
1P1,M

′
∣∣∣−→D · −→E

∣∣∣ 3D1,M
〉

E(3D1) − E(1P1)

∣∣1P1

〉
, (2.17)

where
∣∣∣ ^3D1,M

〉
is the perturbed 6s5d 3D1state, E(3D1) and E(1P1) are the energies of

the 6s5d 3D1 and 6s6p 1P1 states. Since the mixing of the 3D1 and 1P1 states is large and

the 6s2 1S0 → 6s6p 1P1 transition is a strong E1 transition, a sizable transition amplitude

between the
∣∣ 1S0

〉
and

∣∣∣ 3̃D1

〉
states is induced with experimentally achievable electric

fields.

To illustrate the properties of the Stark-induced amplitude we consider the follow-

ing analysis. We choose a coordinate system with the z-axis directed along the direction of

the static electric field. In order to determine the mixing between the different magnetic

sublevels of the 3D1 and 1P1 states resulting from the static electric field we apply the

Wigner-Eckhart theorem to equation 2.17.

∣∣∣ ^3D1,M
〉

=
∣∣3D1,M

〉 − ∑
M ′=±1,0

(−1)1−M+M ′
(

1 1 1
−M ′ 0 M

)
E

(
1P1 ‖D‖ 3D1

)
E(3D1) − E(1P1)

∣∣1P1,M
′〉 .

(2.18)

The E1 transition amplitude between the 1S0 state and perturbed 3D1,M
′ state is therefore

given by

〈
1S0

∣∣∣−→ε · −→D
∣∣∣ ^3D1,M

〉
= −

∑
M ′=±1,0

(−1)1−M+M ′
(

1 1 1
−M ′ 0 M

)
E

(
1P1 ‖D‖ 3D1

)
E(3D1) − E(1P1)

×

〈
1S0

∣∣∣−→ε · −→D
∣∣∣ 1P1,M

′
〉
. (2.19)



To see which transitions are allowed we apply the Wigner-Eckhart theorem once again and

sum over M ′ giving

〈
1S0

∣∣∣−→ε · −→D
∣∣∣ ^3D1,M

〉
= −

∑
q=±1,0

(−1)1−M |ε̂−q|
(

1 1 1
q 0 M

)

×
(

0 1 1
0 q M

)
E

(
1P1 ‖D‖ 3D1

)
E(3D1) − E(1P1)

ε
(

1S0 ‖D‖1 P1

)
(2.20)

= (−1)1−M |ε̂−M |
(

1 1 1
−M 0 M

)(
0 1 1

0 −M M

)
(2.21)

× E
(

1P1 ‖D‖ 3D1

)
E(3D1) − E(1P1)

ε
(

1S0 ‖D‖1 P1

)
(2.22)

where ε̂q is the projection of the unit vector ε̂ along the spherical basis vector êq. Because

(
1 1 1
0 0 0

)
= 0 (2.23)

equation 2.20 shows that the
∣∣∣ ^3D1,M = 0

〉
cannot be excited if the direction of the electric

field is along the z-axis, and that the component of −→ε which is parallel to the electric field

does not contribute to the transition amplitude. Thus, we can only consider light polarized

in the x-y plane and write

ε̂ = ax̂+ bŷ = a

(
1√
2

(ê−1 − ê+1)
)

+

b

( −i√
2

(ê−1 + ê+1)
)

(2.24)

where

|a|2 + |b|2 = 1. (2.25)



Substituting equation 2.24 into equation 2.20 and evaluating it for the case of M = ±1

gives

〈
1S0

∣∣∣−→ε · −→D
∣∣∣ ^3D1,M = ±1

〉
=

1
6

(a∓ ib)
E

(
1P1 ‖D‖ 3D1

)
E( 3D1) − E( 1P1)

(
1S0 ‖D‖ 1P1

)
. (2.26)

Noting that

−→
E ×−→ε =

[
1√
2
(a− ib)ê−1 − 1√

2
(a+ ib)ê+1

]
E, (2.27)

we see that it is possible to write the Stark-induced amplitude as

〈
1S0

∣∣∣−→ε · −→R
∣∣∣ ^3D1,M = ±1

〉
≡ E1Stark = iβ

(−→
E ×−→ε

)
M
, (2.28)

where
(−→
E ×−→ε

)
M

is the eM component of the vector −→
E × −→ε and β is a real number

[8]. Using this simplified notation we see that for a generalized coordinate system E1Stark

becomes

E1Stark M ′ =
− iβ√

2

[(−→
E ×−→ε

)
x

+ i
(−→
E ×−→ε

)
y

]
δḾ,+1+

iβ√
2

[(−→
E ×−→ε

)
x
− i

(−→
E ×−→ε

)
y

]
δḾ,−1 + iβ

(−→
E ×−→ε

)
z
δḾ,0.

(2.29)

The magnitude of β was measured to be

|β| = 2.18(33) × 10−8 ea0

V/cm
(2.30)

in this laboratory [10]

2.4 Interference of the Stark-Induced Amplitude and the M1

Amplitude

Interference between two amplitudes is only possible if the amplitudes are either

both real or both imaginary and the amplitudes couple to the same quantum states. To



illustrate how this interference occurs, we consider the following experimental setup. A

static electric field is applied to a sample of atoms, generating a Stark-induced amplitude.

This direction is used to define the y axis of a coordinate system. From equation 2.28,

only light polarizations perpendicular to the electric field contribute to the Stark transition

amplitude. Thus, the direction of the polarization of the light used to excite the transition

is chosen to be perpendicular to the electric field. This direction is used to define the

z axis. With this geometry, equation 2.29 shows that the resulting amplitude is purely

imaginary. Hence, the direction of the magnetic field of the light, −→ß , must be chosen so

that the resulting M1 amplitude is also imaginary. From equation 2.2 we see that this

occurs when ß̂ = ŷ. Noting that ß̂ = k̂ × ε̂, where k̂ is the direction of the propagation of

the light, we have k̂ = x̂ (see figure 2.2). This geometry gives a transition probability of

M1 + E1Stark =
[
i√
6
ß

(
1S0 ‖µ‖ 3D1

) − i√
2
β

(−→
E ×−→ε

)
x

]
δM,+1 +[

i√
6
ß

(
1S0 ‖µ‖ 3D1

)
+

i√
2
β

(−→
E ×−→ε

)
x

]
δM,−1 (2.31)

Although, the M1 and the E1Stark contributions to the amplitude are both imaginary, the

interference term for the M = +1 and the M = −1 contributions are of opposite sign. This

means that if both of the magnetic sublevels are excited simultaneously, as is the case for

y-polarized light, the two interference terms will cancel in the transition probability. One

way to circumvent this problem is to apply a static magnetic field, −→B , along the z axis.

This causes the energies of the M = +1 and M = −1 magnetic sublevels shift in opposite

directions (see equation 2.8). Given a sufficiently strong magnetic field, it is possible to

resolve the energies of the two magnetic sublevels and to excite only one of the magnetic
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Figure 2.2: Experimental geometry for M1 measurement

sublevels with narrow-band light. In this case the transition probability is given by

P (M1 +E1Stark)Ḿ=±1 = |M1 + E1Stark|2

=


1
6ß

(
1S0 ‖µ‖ 3D1

)2 +

1
2β

2
(−→
E ×−→ε

)2

x
±

β
3 ß

(
1S0 ‖µ‖ 3D1

) (−→
E ×−→ε

)
x

 δḾ,±1. (2.32)

At electric fields greater than ˜10kV/cm, the estimate in equation 2.10 gives an

M1 transition probability which is ˜2 × 10−6 times smaller than the E1Stark transition

probability. Thus, the term due solely to the M1 amplitude may be discarded. This

leaves the terms from the Stark-induced amplitude and the interference term

P (M1 +E1Stark)Ḿ=±1 = |M1 + E1Stark|2

=

 1
2β

2
(−→
E ×−→ε

)2

x
±

β
3 ß

(
1S0 ‖µ‖ 3D1

) (−→
E ×−→ε

)
x

 δḾ,±1. (2.33)

The contribution due to the Stark-induced amplitude alone is proportional to the square



of the electric field while the interference term is linear in the electric field. This means

there will be an asymmetry in the transition probability, equal to the ratio of
2M1
βE

,with

the reversal of the direction of the electric field. Using the estimate of the M1 amplitude

given above, along with the measured value of β gives an asymmetry of

0.002
E / 10 kV/cm

. (2.34)

Although the asymmetry increases with decreasing electric field, the statistical sensitivity

increases with the square root of the signal size. Since the signal size is proportional to

the square of the electric field, the statistical sensitivity is proportional to the magnitude

of the electric field. Thus, if the measurement is limited by statistical noise, there is no

advantage to decreasing the electric field.

In addition to reversal of the electric field direction, reversing the direction of the

magnetic field also produces a change in the sign of asymmetry since switching the magnetic

field changes the magnetic sublevel excited (see equation 2.33). This additional reversal

can be used to distinguish the real M1-E1Stark interference terms from possible systematic

effects.
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Chapter 3

Experimental Apparatus

A block diagram of the apparatus used to make a preliminary measurement of

the M1 amplitude is shown in figure 3.1. An effusive atomic beam of natural ytterbium

was excited by light at 408 nm in the presence of crossed D.C. electric and magnetic fields.

Fluorescence from the decay of the 6s5d 3P1 → 6s2 1S0 at 556nm was detected with a

photomultiplier tube. The current from the photomultiplier tube was sent through a

current to voltage converter with a low-pass filter and was detected with an analog to

digital converter and stored on a personal computer. The direction of the electric field was

switched at ˜0.7 Hz by a signal generated from the computer.

Much of the apparatus described here was also used to measure the Stark-induced

amplitude and energy shifts of the 6s2 1S1 → 5d6s 3D1 transition. In particular, the light

source, atomic beam, vacuum chamber, and electric field plates were used in these previous

measurements and were unmodified for this measurement. Consequently, these parts of

the apparatus are described in detail in reference [10].
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Figure 3.1: A block diagram of apparatus



3.1 Light Source

3.1.1 Laser at 816 nm

Light at 408.344 nm (vacuum wavelength) is required to excite the 6s2 1S1 → 5d6s 3D1

transition. The light was created by frequency doubling light at 816.689 nm from a

CW Ti:sapphire laser. This was created using a Titan-CW single-mode ring laser made

by Schwarz Electro-Optics which had been modified to make it continuously frequency

scannable over a 20 GHz range. These modifications are described in detail in [10]. The

Ti:sapphire crystal was pumped with all lines from a Spectra-Physics 2080 Ar+ laser which

was operated at ˜8 watts. The Ti:sapphire laser produced ˜1 watt of light at 816nm. In

order to achieve high frequency stability the Ti:sapphire laser was locked to an external,

temperature stabilized, commercial, Fabry-Perot interferometer with a free-spectral-range

of 150 MHz (Burleigh CFT-500) using the FM-sideband locking technique [16]. The

length of the Fabry-Perot interferometer could be changed by applying a voltage to a PZT

mirror mount within the interferometer. By varying the length of the interferometer the

frequency of maximum transmission of the light through the interferometer. The laser

frequency could therefore be scanned by changing the voltage applied to the PZT, making

the laser scannable by a voltage signal generated from the computer.

The 816.689 nm light required from the Ti:sapphire laser is very close to a broad

water vapor resonance absorption line at 816.678 nm. The presence of this line introduced

sufficient loss in the laser cavity to prevent lasing at 816.689 nm. The absorption due

to water vapor was estimated to be ˜10−3 within the 1 m cavity [10]. This difficulty was

overcome by introducing a thin etalon in the cavity to prevent lasing in adjacent transmission



peaks of a thicker etalon inside the cavity. Additionally, it was necessary to create a steady

flow of dry nitrogen through the laser cavity when the laser was used [10].

3.1.2 Frequency Doubler

The 816 nm light from the Ti:sapphire laser was sent into a commercial, external

frequency doubling unit (Laser Analytical Systems, Wavetrain CW frequency doubler). The

doubling unit consisted of an LBO crystal placed at the focus of a ring cavity. The length of

the cavity was locked to the Ti:sapphire laser frequency using the Hänsch-Couillaud method

[17].

When first setup, the efficiency of the doubling cavity was 8% at 300 mW of pump

power. This decreased in time, resulting in only 2% efficiency at 900 mW. This decrease

was attributed to degradation of the surface of the crystal due to water vapor. When a new

crystal was placed in the cavity the efficiency increased to 16% at 900 mW. Although the

new LBO doubling crystal allowed for significantly more power out of the doubler, it also

was seen to make the frequency doubling cavity more sensitive to the water vapor absorption

line at 816.678 nm. With the old crystal the water vapor absorption line created a minor

reduction in the power in the cavity, but the doubler remained locked at the frequency of

the 1S1 → 3D1 transition. With the new crystal, the doubler was unable to remain locked

near the 1S1 → 3D1 resonance. A flow of dry nitrogen was setup in an effort to purge

the water from the cavity. Although this allowed the laser to maintain the lock closer to

the desired frequency, the frequency doubler was still unable to remain locked as the laser

scanned across the frequency for the 1S1 → 3D1 resonance. Consequently, the old crystal

was temporarily put back into the cavity and was used to make the measurements described



here. This problem will be addressed in the near future. The power out of the frequency

doubler was ˜15 mW for the measurements described here.

3.1.3 Intensity Stabilizer

In order to achieve high stability in laser power the 408 nm light was sent through

a commercial laser power stabilizer made by Cambridge Research and Instrumentation

(Model LS100). A photodiode detects a small amount of the light which is picked off from

a beamsplitter. This is used to create an error signal which controls the voltage applied

to a Pockels cell. The Pockels cell in conjunction with an output polarizer acts as a

voltage controlled retardation plate causing the transmission through the cell to vary with

the voltage applied. The D.C. stabilization was seen to be 1 part in 104 over the course of

a frequency scan with short term fluctuations around 1 part in 100.

Although the power stabilizer was able to stabilize the signal quite well, it intro-

duced a significant loss in laser power. The power was reduced by approximately one-third

its initial value, giving ˜5 mW of light for the measurements described here.

3.2 Atomic Beam and Vacuum Chamber

The atomic beam was created inside a vacuum chamber which was evacuated to

a residual pressure of ˜5×10−6 Torr. The vacuum was maintained with a turbo pump

with a pumping speed of 170 liters per second and a 120 cm2 liquid nitrogen trap. The

atomic beam was created by resistively heating a 6 in long 2 in diameter stainless steel tube

containing ytterbium nuggets. Flanges were attached to the front and rear of the tube.



The front flange consisted of a 0.19 in thick piece of stainless steel in which a continuous zig-

zag pattern was cut. The zig-zag pattern was created using wire electric discharge machine

with 0.010 in wire. The zig-zag pattern covered an area 0.2 in in the vertical direction and

0.75 in in the horizontal direction. The cuts in the flange gave a transparency of ˜50%

in the forward direction while reducing the amount of ytterbium leaving the oven at large

angles. This prevents the build up of ytterbium inside the chamber and decreases the

amount of ytterbium wasted. The oven was heated using thermo-coax cables attached to

the tube and the flanges. The front of the oven was kept ˜30◦C hotter than the rear, as

measured with thermocouples, so that ytterbium would not build up in the channels in the

front flange. The oven was operated at ˜480◦C, corresponding to a vapor pressure of ˜10−2

Torr.

3.3 Electric Field

3.3.1 Electric Field Plates

The electric field plates were made of stainless steel and measured 3.2 cm along the

direction of the atomic beam, 8.9 cm in the direction of the laser beam, and 0.79 cm thick.

The edges of the plates were rounded to reduce discharges. A depression 2.3 cm along

the laser beam, 1.3 cm along the atomic beam, was cut into the top field plate giving it a

thickness of 0.12 cm. In this region 198 holes with 0.12 cm diameter were drilled through so

that the fluorescence could be detected directly above the electric field plates. The plates

were separated by 1.016 cm by two Delrin spacers, positioned perpendicular to the laser

beam. Holes 0.5 in in diameter were drilled in the spacers for the laser beam to go through.



The electric field plates were mounted to a large aluminum block 8 in from the base of the

chamber (see figure 3.2).

The effect of the holes on the electric field was evaluated using a commercial electric

field simulation program called Maxwell. The program was unable to analyze the three-

dimensional rendering of the plates, so a two-dimensional version consisting of channels

instead of holes was done. The results of this showed a reduction of the electric field of

1% in the region with the channels. For the holes, there is less of a gap in the electric

field plate than there is with channels, thus there is less of a reduction in the electric field.

However, it is unclear how much better this would be. For the measurements discussed

here this error is negligible.

3.3.2 Electric Field Switching

The electric fields were switched using two SPDT high-voltage, mechanical relays

(Jennings RE6B) rated at 35 kV. A transistor circuit was built to control the 26 V d.c.

required to switch. The circuit was designed to receive TTL logic pulses which were

generated from a software programmable counter on a data acquisition computer board.

This pulse was then sent to a switching circuit which could be set to buffer or invert the

TTL signal for each relay independently. In addition, the switching circuit contained a

manual override which could position the relays in either position. Thus, the voltage for

each electric field plate could be controlled independently. The electric fields were typically

switched at a voltage of 10 kV.



Figure 3.2: Interaction region. Magnetic field coils in black, electric field plates in grey,
light guide hatched. Laser beam propagates left to right with polarization out of the page.
Atomic beam propagates out of page.



3.4 Magnetic Field Coils

The magnetic field was generated by two coils of 18 AWG copper wire consisting of

1300 turns each. The wire was wrapped on anodized aluminum frames with an inner radius

of 3 in. and thickness of 1.4 in. in the radial direction. Epoxy was applied to the wires

as they were wrapped in order to create good thermal conductivity and reduce resistive

heating of the coils. The coils were mounted to the aluminum block which supported the

electric field plates. The separation between the centers of the two coils was 4.25 in.

The configuration was made to approximate a Helmholtz coil configuration, but

the large thickness of the coils leads to significant variation from the field generated by

Helmholtz coils. The azimuthal and radial fields were calculated over the interaction

region using techniques described in reference [18]. The results of this calculation were a

magnetic field of

B = 94.46 Gauss at 0.800 Amps, (3.1)

with a variation of less than 0.1% Gauss over the interaction region. This level of uniformity

was sufficient since the asymmetry described in chapter 2 does not depend on the magnitude

of the magnetic field, but only on the direction.

The current through each of the coils was controlled by independent bipolar voltage

controlled current supplies. Each current supply consists of a monolithic high power op-

amps with positive and negative feedback loops. The circuit was designed to give a current

of

IOut = −0.1 · VIn, (3.2)



where IOut is the current supplied and VIn is the controlling voltage.

3.5 Fluorescence Detection

The transition was detected by measuring the fluorescence in the 6s5d 3P1 → 6s2 1S0

decay channel at 556 nm. A ˜14in lucite light guide was positioned above the holes in the

top electric field plate (see figure 3.2). The light guide was polymerized to a lucite window

at the top of the vacuum chamber using dichloroethane. A Burle 8850 photomultiplier tube

was positioned on top of the lucite window. In order to reduce background light striking

the photomultiplier tube, a 560 nm interference filter with 10 nm full-width-half maximum

transmission profile was placed in between the photomultiplier tube and the lucite window.

It was observed that the lucite used for the light guide fluoresced heavily in the

560 nm range when 408 nm light was incident upon it. Consequently, a piece of colored

glass with low transmission at 408 nm was epoxied onto the end of the light guide which

was closest to the interaction region, thereby reducing the scattered 408 nm light entering

the light guide.

The signal from the photomultiplier tube was sent to a current-to-voltage converter

which had a low-pass filter with a 1 ms roll-off and a current-to-voltage conversion of

V =
(
3 × 106

)
I, (3.3)

where I is measured in amps and V in volts. The signal was then digitized by a computer

data acquisition board.



33

Chapter 4

Data and Analysis

The data taken upto this point is very preliminary and its interpretation is conse-

quently limited. The process in which data is taken has not been optimized yet, and there

are many areas left to improve before a measurement of the M1 amplitude will be possible.

Below we discuss how the available data was taken, analyzed, and interpreted.

4.1 Data Acquisition

The data was taken by scanning the frequency of the 408 nm light while switching

the electric field. Switching the magnetic field was not done for the data described here, but

will be implemented in the future. The laser frequency was scaned with a signal generated

by the computer as described in section 3.1. The electric field was switched ˜10 times

for each frequency point, at a rate of ˜0.7 Hz. Data acquisition was triggered with the

switching of the electric field. The photomultiplier tube signal, after passing through the

current-to-voltage converter, was digitized ˜500 times at a rate of ˜3000 digitizations per



second beginning immediately after the trigger was received. When the electric field was

switched there was a discharge somewhere along the high voltage apparatus. This discharge

was probably due to the rearranging of the surface currents on the delrin insulators. It

resulted in sparks which were detected by the photomultiplier tube. In order to reduce the

effect of these sparks in the data the first 200 digitizations was discarded. The last 300

digitizations were averaged and recorded, giving 1 data point for each electric field state at

a given frequency point. In addition, the direction of the electric field was recorded. All

of the data was taken on the M = ±1 magnetic sublevels of isotope 174Yb since it is has

the largest isotopic abundance and there is little overlap from the hyperfine components of

the odd isotopes (see figure 2.1). The background signal due to scattered light and the

dark current of the photomultiplier tube was measured when the frequency of the light was

not in resonance with the transition. It was typically around 2 mV, while the signal was

˜3 mV. This value was subtracted off from the photomultiplier signal during the analysis.

A typical scan is shown in figure 4.1. The scan show good agreement with the results

displayed in figure 2.1 with the two M = ±1 magnetic sublevels of isotope 174Yb splitting

and the different magnetic sublevels of 173Yb F = 5
2 not resolvable.

The scan shows a significant amount of noise, including a large number of outly-

ing points. The source of the noise is not completely understood at this point and will

be investigated in the near future. Possible explanations of the outlying points are the

frequency doubler losing the lock temporarily, causing the laser power to drop, significantly

decreasing the scattered light. If there are still discharges after the first 200 points, they

also could increase the noise and may account for the outlying points.



10 MHz

Figure 4.1: Fluorescence in the 3P1 → 1S0 decay channel (556 nm) after excitation of
the 1S0 → 3D1 transition versus the frequency of excitation. Electric field at 10 kV/cm.
Magnetic field at 95 Gauss.



4.2 Analysis

The data points were classified according to the frequency of the excitation light

and the direction of the electric field, giving ˜10 points for every frequency point. For

each frequency point, data points corresponding to different directions of the electric field

were subtracted. The data points corresponding to the same electric field state were also

subtracted. These different combinations were then averaged over each frequency point.

Giving the combinations

The distribution of the 300 points averaged for each electric field state was used to

calculate the error for each point. The error was used to take a weighted average over each

frequency point independent of the direction of the electric field. This data was fit with

a two peak fit with each peak consisting of the sum of a Gaussian and Lorentzian. This

combination was determined empirically to describe the lineshape for the atomic beam and

has no other motivation. The width and amplitudes of the two peaks were held constant

since, ignoring the small overlap of isotope 173 F = 5
2 → F ′ = 5

2 , the two peaks should be

of the same height. The effect of the overlap of isotope 173 F = 5
2 → F ′ = 5

2 was reduced

by considering only those points which were in the upper 1
2 of the peaks. An example of

the fit to the averaged data is shown in figure 4.2.

As the laser frequency scans over the two peaks, the relative amount of the different

magnetic sublevels contributing to the signal changes. Thus, the subtracted data with

different electric field states should vary as the frequency of the laser varies according to

Asymmetry = Signal+ − Signal− =
(PeakM=+1 − PeakM=−1)
(PeakM=+1 + PeakM=−1)

2M1
βE

, (4.1)

where Signal+ is the signal from the photomultiplier tube with a given direction of the



Figure 4.2: Example of fitting of the experimenal averaged fluorescence (thick line) in the
3P1 → 1S0 decay channel (556 nm) after excitation of the 1S0 → 3D1 transition versus the
frequency of excitation. The two individual components (thin lines) are are determined
from the fit parameters. Electric field at 10 kV/cm, magnetic field at 95 Gauss.



electric field, Signal− is the signal with the opposite direction of the electric field, PeakM=+1

is the contribution of the M = +1 magnetic sublevel to the signal size, and PeakM=−1 is the

contribution of the M = −1 component. The data with the same direction of the electric

field should be zero, independent of the frequency of the laser. The values of PeakM=+1

and PeakM=−1 as a function of frequency were determined from the fit to the averaged

signal. In order to account for possible systematic effects which might cause the signal to

not be centered around zero, an offset was included to equation 4.1. Thus, the subtracted

data was fit as a function of frequency to

Asymmetry =
(PeakM=+1 − PeakM=−1)
(PeakM=+1 + PeakM=−1)

A+B, (4.2)

where A and B are the fit parameters corresponding to the asymmetry coefficient
2M1
βE

and

the offset.

The error for the subtracted data for each frequency point was estimated from the

standard deviation of the data points averaged over the frequency point. This estimate

of the error was seen to be too small and resulted in a reduced χ2 much larger than one.

This indicates that there is noise at a slow frequency relative to the time of an individual

acquisition. The source of this noise has yet to be determined. In order to get a more

accurate estimate of the error in the fit parameters, the error on the points was increased

until the reduced χ2 was one. The diagonal elements in the covariant matrix used in the

fit were then used to estimate the errors for the fit parameters. For the subtracted data

with the same electric field state no asymmetry is expected. This data was analyzed in the

same manner to serve as a check on possible systematics.



Asymmetries for Resulting Asymmetries for
Run Different Electric M1 Same Electric

Field States Amplitude Field States
1 0.017(16) 5.0(48)×10−4 µB 0.010(16)
2 -0.054(18) -1.50(50)×10−3 µB 0.014(17)

Average -0.014(12) -4.6×10−4 µB -0.004(11)

Table 4.1: Asymmetries and M1 Amplitudes

4.3 Results

The preliminary results described here are from two scans of the laser frequency

with an electric field of 10 kV/cm. Interpretation of the data is very limited due to the

small amount of data currently available. In addition, there is poor agreement between the

two scans. The results of the two scans are presented in table 5.1

The disagreement between the two scans suggests that there may be systematic

effects which are varying with time. Although what these effects may be remains to be

determined. Thus, using the error on the individual scans to estimate the error for the

combined value is not realistic. The error quoted above was determined from the variation

of the results of the two scans. Since only two scans are currently available the uncertainty

in the error is relatively large. However, we place a preliminary upper limit on the M1

amplitude of

|M1| < 3 × 10−3 µB, (4.3)

with a confidence level of ˜95%.



4.4 Systematic Errors

At present, any systematic errors due to misalignments of the various fields are

much smaller than the error associated with the statistics from the data currently available.

However, the issue of systematic effects will become important when the noise is decreased.

The effects of misalignments was studied by performing an analysis similar to that described

in section 2.4 using arbitrarily directed fields. The direction of the magnetic field was used

to define the z-axis and the direction of propagation, the direction of the electric field,

and the polarization were allowed to deviate from their nominal values. In addition, the

polarization was allowed to be elliptical, with the phase chosen to make the z-component

real. The results of the calculation reveal that using the analysis described above, the

M1 amplitude measurement is relatively insensitive to misalignments. Any misalignment

must coincide with a second, or even third, misalignment if an effect is to be observed in

the value of the M1 amplitude. If, for example, the direction of propagation of the light

were misaligned by ˜10◦ towards the y-axis and the electric field were misaligned by ˜10◦

towards the x-axis, the value of the M1 amplitude measured would be off by less than

1%. In addition, there is no misalignment which can lead to an asymmetry which is not

proportional to the M1 amplitude.

The second source of systematic errors to consider is imperfect switching of the

electric fields. Here too, the method of measurement is relatively insensitive to error.

Because the asymmetry relies on the changing sign of the M1 interference term as the laser

frequency scans over the magnetic sublevels, an error in the switching of the electric field

leads will not effect the value of the asymmetry coefficient, but will only lead to a constant



offset of the asymmetry signal.

With the robust nature of the experiment it might appear that the switching of the

magnetic field is not necessary. However, switching of the magnetic field allows for a higher

frequency lock-in detection which will eliminate the low frequency noise present in the data

taken so far. In addition, switching of the magnetic field also leads to an asymmetry which

is insensitive to imperfections in the switching. The M1 amplitude does not depend on the

magnitude of the electric field (see equation 2.32). Consequently, the magnetic field only

has to be switched well enough that the Zeeman shift is not significantly different for the

two magnetic sublevels.
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Chapter 5

Conclusion

The measurement of the M1 amplitude is far from complete. However, the above

data provides a guide as to what improvements must be made in the near future. The most

immediate step is to improve in the short-term noise of the fluorescence detection. With

the current noise it will not be possible to measure down to the 10−4 µB in a realistic period

of time. At present, the source of the noise is unknown, but is far above the theoretical,

shot noise limit. It is also necessary to find a solution to the problem of the water vapor

in the doubling cavity so that the new LBO crystal can be used, allowing for significantly

more power, thereby improving the signal size. Once these improvements are made we will

be able to better assess systematic effects which might lead to false asymmetries. This

will entail switching the magnetic field, as well as the electric field, to provide an additional

check on the value measurement. Although many improvements are necessary before we

achieve the sensitivity necessary to make a measurement of the M1 amplitude, there do not

appear to be any major setbacks.
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