Physics H7A
Fall 2003
D. Budker


Plan of Lectures
Lecture one, August 26
· Introduction, names of Instructor and GSI, contact information, web page, class e-mail list, office hours, labs, discussion sections, midterms.

· The goal of the course – professional introduction to mechanics as the basis of all further physics

· The role of math – just a tool; the ideas will be physical, not mathematical: dimensions, limiting cases, orders of magnitude vs. formal mathematical reasoning, example with a student, her boyfriend and ice-cream (odd number vs. too expensive).

· Systems of units defined basically by units of length, mass, and time. Two most commonly used systems are SI (MKS) and Gaussian (CGS). Many working physicists still use CGS as it is particular convenient for E&M. In mechanics, it really does not matter, and we will use all kinds of units. Warning: watch out for unit consistency.
· Use of the K&K book. We will heavily rely on the book. I find it silly to repeat everything that is so well written there in class. So, in general, we will be going over examples that are not necessarily in the book, while I will be assuming that you have read the chapters that I will assign. For example, this week, please read Chapter one on mathematical preliminaries. Homework will include a mixture of “original” problems and those from K&K. It is quite essential to do at least half-a-dozen problems a week in order to keep up with the course.
· Enough of preliminaries; time to get to business. Scalars vs. Vectors. Scalars are quantities that do not have any spatial direction associated with them (time, mass, number of items, distance), while vectors are directed line segments, with which we associate both a direction (generally, in 3-d Cartesian space, but sometimes restricted to lower dimensions, e.g., 2 in the case of a plane, or 1 for linear problems), and a scalar representing the length of the vector. There are many notations people use for vectors, for example bold letters like V, and letters with arrows on top of them like
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. In the special case of vectors with unit length, a common notation is a “hat” on top of the letter: 
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· Properties of vectors. Vectors can be added subtracted, multiplied or divided by scalar, you can use parenthesis, permute things pretty much in the usual way. 
An example: addition of two vectors:
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Now you can also multiply two vectors, and there are two very different way of doing it:
· Scalar Product: 
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, which is a scalar, and where vertical bars designate the length of the vector, and 
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 is the angle between the vectors; and Vector Product: 
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which is a vector that is directed according to the right-hand rule, and whose length is 
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. We will discuss this in some detail. Incidentally, there is generally another thing one can make out of two vectors called a tensor, which is neither a scalar nor a vector, but we will not deal with tensors for now.
· Cartesian coordinates: 
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. Scalar and vector product expressed in the coordinate notation.
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· We have already talked a bit about the difference in the way mathematicians and physicists think and about the importance of dimensions. Turns out that you can often say a lot about a problem just from knowing the units in which the answer should be measured. Here is an example (due to a great theoretical physicist A.B. Migdal), which is frowned upon by formal mathematicians. We will prove the Pythagoras’ Theorem by the method of dimensions. The Theorem states that in a right-angle triangle the sum of the squares of the side lengths is equal to the square of the length of the hypotenuse: a2+ b2= c2.
To prove this, let’s drop a perpendicular from the right-angle corner onto the hypotenuse as shown. Clearly, the area of the original triangle is the sum of the areas of triangles I and II. Now, we know that a right-angle triangle is fully defined by two of its elements, for example the length of the hypotenuse and one of the angles, say β. Since area is measured in m2, i.e., it has dimensions of length square, we can write for the area of the whole triangle: A=c2·f(β), where f(β) is some dimensionless function that only depends on the angle β. Since, similarly, we have analogous expressions for the areas of triangles I and II, we immediately write c2·f(β) = a2·f(β)+ b2·f(β), which yields the sought-for result upon canceling the common factor f(β).
Lecture two, August 28

· Let us now turn to something else. Actually, this is an important thing because all modern science started some 400 years ago with this experiment – Galileo dropping objects from the leaning tower of Pisa.

· Estimate the height of the tower (56 m)

· Estimate how long it takes a ball to fall (a few seconds)
· Use this example to introduce position vector, velocity vector, speed, average velocity, instantaneous velocity, acceleration.

· Relation between position, velocity, acceleration. 

· Integrals and derivatives.

· Galileo’s hypothesis that balls fall the same, independent of mass, and general opposition to it; Aristotle; Philosophy vs. Natural Science. 

· Derivation and discussion of 

· h = h0 – gt2/2; limiting cases
· v = gt

· tfall = (2h/g)1/2; how does the fall time scale with the height?
· A bit more ballistics. Cannon shoots a cannonball at a certain initial speed v0. 

· How far does the ball travel in the horizontal direction till it hits the ground? 

· At which angle should one tilt the barrel, so the cannonball flies the farthest? 

Solve in a couple of different ways; introduce optimization using the zero-derivative method. We can use this problem to once again highlight some general principles of how a mechanics problem may be solved:

· Choose a convenient coordinate frame; if convenient, write separate eqns for independent motion along different coordinates

· Are there any limiting cases for which the answer is obvious?

· After the answer is obtained, does it have correct dimensions? Does it make sense in the limiting cases thought of above?

Lecture three, September 2

· The falling stone/feather demonstration (in air and in vacuum)
· The next topic I’d like to discuss is rotational motion. This is usually discussed somewhat later in the course; however, I’d like to introduce it now in order to illustrate an important concept: if you know one thing well, you automatically know a whole bunch of other things well. We will now see direct analogies between linear and circular motion. Other examples are, just to give you an idea, if you know how a pendulum works really well, you also know RLC circuits in electronics, waves in the ocean, oscillations in plasma, the structure of a light beam, etc, etc.
· Uniform circular motion. Linear and angular velocity

· Angle is the analog of linear coordinate, ω is analog of v
· Derivation of v=ωR; refine to the vector form: 
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· Note that velocity for uniform motion, while of constant magnitude, is continuously changing direction → acceleration; derive 
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so that (a=v2/R)

· Polar coordinates and vector representation of Θ and ω
· What are the linear velocities of various points on a rolling wheel?

· If a train is moving from Moscow to St. Petersburg, are there any parts that are moving from St. Petersburg to Moscow?

Lecture four, September 4

· The 3+1 Newton’s Laws

· Difference in the way physical theory is built cf. mathematical axiomatics

· The First Law; inertial frames

· The Second Law 
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 is the vector sum of all forces acting on the particle

· The Third Law 
[image: image13.wmf]b

a

F

F

r

r

-

=


· The Universal Gravity Law
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, where G ≈ 6.67·10‑11 Nm2/kg2; remarkably, the masses entering this law are the same as in the Second Law (the Equivalence Principle). The origins of gravity.
· Gravitational forces due to spherical objects. Derivation of the fact that a body of spherical shape exerts gravitational force on an external mass as if all its mass was concentrated in the center. Absence of the gravitational force within a spherical shell. Observation that problems with simple answers usually have simple solutions.
Lecture five, September 9

· More discussion of gravity forces due to spherically symmetric objects: the inside case

· The simple way to get the result on gravitational forces due to spherical objects is to use the Gauss’ Theorem. The notions of gravitational field (the minus sign in the Newton’s gravitation law revisited), field lines, formulation and explanation of the Theorem, application to spherical shells.  
· A story about how Richard Feynman became a physicist (balls in a Radio Flyer)

· Subtleties of inertial vs. non-inertial frames. We defined an inertial frame as such a frame where a body does not accelerate in the absence of forces. Also, in an inertial frame, we have the Second Newton’s Law. Does a frame which is free falling in the Earth’s gravitational field qualify as an inertial frame? We can safely say that it does not because the bodies do not accelerate in this frame upon the action of the Earth’s gravitation force, so the Second Law does not hold. However (and this is the tricky part), as a consequence of the equivalence principal, an observer in such a system cannot tell whether they are in an inertial frame, or a frame free-falling in the gravitational field (unless they see the Earth). So from the perspective of such an observer who is ignorant of the fact that there is a body (Earth) exerting gravitational pool, this would seem like a perfectly fine inertial frame…   

· Example of the application of the Newton’s Laws: monkey on a rope
· Another example: rotating conical pendulum; stability analysis
· Demonstration of an inverted pendulum
Lecture six, September 11

· The Foucault pendulum demonstration and discussion
· Items from last time: conical pendulum and stability analysis

· Demonstration of the conical pendulum – how a stable-equilibrium point becomes unstable

· The Coriolis force (arising when a body is involved in rotational motion and is changing the radius at the same time) – a straightforward derivation
Lecture seven, September 16

· Calculation of the Coriolis acceleration for a car moving from SF to LA with v=72 km/hr
· How do we decide whether a quantity is large or small? Example: the effect of Coriolis forces on weather systems (a calculation of forces on air resulting in wind; air density)
· Items from previous lectures: forces between rope and pulley

· Momentum; generalization of the Second Law. Forces acting on composite systems – external and internal
· Momentum conservation; some simple examples
· Demonstrations: water in rotating bucket, candles on rotating platform
Lecture eight, September 18 
· Introduction to rocket Science – the Tsialkovskii formula; estimate of the launch weight to payload weight ratio for space travel (including the estimate of the orbital speed for a low circular orbit around the Earth)
· Does it help much to launch from the equator?
· An example of momentum conservation: a fisherman in a boat problem; center of mass
· A more subtle case: water friction ( (-v)  
· Elastic and inelastic collisions, demos with balls

· Experiment with rifle shooting into wooden block; verification of the momentum conservation law

Lecture nine, September 23
· Demonstration of a compressed air rocket

· A brief discussion of dry friction

· How does the car’s stopping time depend on its mass?

· Experiments verifying (?) the “law” of friction: (Ffr)max=μN, where N is the magnitude of the normal force
· Experiment showing large difference between static and dynamic friction

· Experiment in which we measure μ using the inclined surface method
· Definition of work and power, units; derivation of 
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· Example: work and energy conversion when we lift a weight in gravitational field, and then drop it

· Energy conservation

· Demonstration of the brachistochrone property of the cycloid

Lecture ten, September 25
· Demonstration of atmospheric pressure – collapsing metal can

· Demonstration of separation of motion in two orthogonal directions – shooting a ball vertically from a moving platform

· Use of energy conservation to calculate velocity in a complicated motion

· Relation between kinetic energy and work – the work-energy theorem 

· More on the brachistochrone. An idea on how to minimize path integrals

· Springs; parallel and series connection. Potential energy of a spring
· Demonstrations of the Hooke’s law and harmonic oscillation. Measuring the dependence (or lack thereof) of the frequency on the mass and amplitude

· Derivation of the Simple Harmonic Oscillator (SHO) motion

· Energy transformation in a SHO

Lecture eleven, September 30

· Oscillation of two masses connected with a spring; reduced mass

· Other examples of the use of reduced mass: planets, atoms, molecules

· Oscillations near minimum of a general potential: Taylor expansion to obtain SHO approximation

· Some other examples of SHO: pendulum, electrical LC circuit

· Rotational dynamics: moment of inertia; moments of inertia of some simple configurations

Lecture twelve, October 2

· More examples of moments of inertia

· The parallel axis theorem

· Angular momentum and is conservation; demonstration

· Torque; 
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· Demonstration that solid disc rotates twice as fast as a hollow disc of the same mass and under the same torque

Lecture thirteen, October 7

· A more detailed discussion of the last demo: how can we justify the constant torque approximation, the neglect of the moment of inertia of the apparatus, etc.

· The problem of a disc on an inclined plane with friction; effective inertial mass; discussion of energy balance
· Planetary motion: the three Kepler’s Laws and how they relate to angular momentum

· Gyroscopes: how can we understand precession from 
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; a demo

· Derivation of the gyroscope’s precession frequency

October 9: Midterm (need blue books)

Lecture fourteen, October 14
· The moment of inertia demo discussion continued – what went wrong and how can we correct our mistakes
· How to take square root of 17?

· The torque demo

· Why do we say that the force of gravity is applied to the c.m.?

· The physical pendulum

· More fun with gyro demos

· A discussions of the seasons (with a demo); inclination of the Earth rotation axis with respect to ecliptic

· Precession of the Equinoxes 
Lecture fifteen, October 16

· Rotations do not commute! A demonstration with a book

· The Berry’s phase – an example with a thumb

· Feynman’s demo with a coffee cup that shows that sometimes you need 2x2π rotations to bring a system to its original state
· More fun with gyro demos

Lecture sixteen, October 21

· Nutation: derivation of the nutation equations, solution, limiting cases

· Fictitious forces in non-inertial frames: a cylinder on accelerating table

· Derivation of the cylinder’s motion upon action of a force; effective mass

 Lecture seventeen, October 23

· Bouncing ball as seen by a stationary observer and an observer riding in an elevator. Energy is not invariant with respect to Galilean transformation, neither is whether there is energy exchange between the ball and the wall or not. Total energy is, however, conserved in either frame. 

· Fictitious forces in uniformly rotating frames

· The moon in the swimming pool problem. Water surface is an equipotential. This discussion turned into a nice sociological experiment that has shown that scientific truth cannot be decided by a democratic vote. Three solutions to the problem were offered; the correct solution got the smallest number of votes.
· Derivation (using the equipotential method) and demonstration of the parabolic surface shape of water in a rotating bucket. 
Lecture eighteen, October 28

· Tides: a qualitative discussion and derivation. Comparison of the effects of the Sun and the Moon. Debunking theories of the Great Flood
· Fluids. Note: there is very little on fluids in the K&K book. We will start with the simplest case of incompressible and inviscid fluid
· Pressure of liquid at a given depth. Hydraulic lift 
Lecture nineteen, October 30
· Archimedes’ Law; buoyancy
· Potential energy of fluid under pressure – the entire static liquid is equipotential
· Liquid flow in pipes. The continuity equation. Energy conservation → the Bernoulli equation
· The speed with which water flows from a bucket if a whole is punched in the side 
Lecture twenty, November 4
· Viscosity, viscous drags; balls, bubbles, etc. A discussion of attached mass
· The Poiseuille flow

· Turbulence; the Reynolds number 

· Rotational flow and vortex motion
Lecture twenty one, November 6

· Oscillations of water in a cup; deep-water gravity waves, Kelvin’s ship-wake wedge; shallow-water gravity waves 

· General properties of waves: λ, ω, k; dispersion relation ω(k); Phase velocity v=ω/k; wave packets and group velocity vg=dω/dk
· Capillary forces, surface tension; pressure under curved surface ((p=2(/R). For water at room temperature, (≈73 mN/m
Lecture twenty two, November 13
· Capillary waves; dispersion relation, group and phase velocities; estimate of the cut-off wavelength below which capillary effects are more important for waves than gravity, and above which, the opposite is true. End of Fluids
Lecture twenty three, November 18

· Central-force motion: general properties

· Centrifugal barrier, effective potential

· General equations of motion; trajectory

· Planetary motion; Physlet computer simulations
Lecture twenty four, November 20

· More on planetary motion. End of central force motion 

· Damped oscillator: physical meaning and general solution
Lecture twenty five, November 25

· More on damped oscillator. The Q factor
· Forced oscillations
Lecture twenty six, December 2

· Acoustic waves
· Musical instruments
Lecture twenty seven, December 4

· A special guest lecture: Prof. Erwin L. Hahn on the physics of string musical instruments (with lots of demonstrations)
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