DRAW THE FREE BODY DIAGRAMS:
\[T = m a_m \]
\[M g - T = M a_M \]
\[\tau = TR = I \alpha \]
where \(I = \frac{1}{2} MR^2 \).

THE CONSTRAINT IS THAT THE LENGTH OF THE STRING IS ONLY INCREASED BY THE "ROLLING" OF THE DISK, WHICH IMPLIES:
\[a_M = a_m = \alpha R \]

EQUATING EXPRESSIONS FOR THE TENSION \(T \):
\[M a_m = M g - M a_M \quad \text{AND} \quad M a_m = \frac{I \alpha}{R} \]
\[M a_m = \frac{1}{2} MR \alpha \]

THE CONSTRAINT EQUATION GIVES US:
\[m a_m = M g - 2(m + \frac{1}{2} M) a_m \]
\[3 \cdot m a_m + M a_m = M g \]

\[a_m = \left(\frac{M}{M + 3m} \right) g \]
\[m a_m = \frac{1}{2} MR \alpha \]
\[\alpha = \frac{2m}{M} \frac{1}{R} a_m \]
\[a_M = \alpha R + a_m \]
\[a_M = \left(\frac{M + 2m}{M + 3m} \right) \frac{g}{R} \]

\[T = m a_m \]
\[T = \left(\frac{m M}{M + 3m} \right) g \]
TORQUE EQN: \[\frac{mg L}{2} \sin \theta = \frac{1}{3} mL^2 \dot{\theta} \]

\[\theta \]

\[m \] \[\Rightarrow \] \[\text{mg} \sin \theta \]

ENERGY CONSERVATION: \[E = \frac{1}{2} I \dot{\theta}^2 + mg h \]

INITIAL ENERGY \[I = \frac{1}{3} mL^2 \]

(bar pivoted from end)

\[E = \frac{mg L}{2} = \frac{1}{2} \frac{1}{3} mL^2 \dot{\theta}^2 + mg \frac{L}{2} \cos \theta \]

\[\frac{1}{6} mL^2 \dot{\theta}^2 = \frac{mg \frac{L}{2}}{2} (1 - \cos \theta) \]

AT \(\theta = 90^\circ \) THE PIVOT MUST ACT ON THE BAR TO HOLD IT IN A UNIFORM CIRCULAR PATH:

\[F_x = -\frac{mL}{2} \dot{\theta}^2 \]

\[\frac{1}{6} mL^2 \dot{\theta}^2 = \frac{mgL}{2} \]

FROM ENERGY CONSERVATION.

\[F_x = -\frac{3}{2} mg \]

\[\frac{mL}{2} \dot{\theta}^2 = \frac{3}{2} mg \]

ALSO, THE PIVOT CAN PROVIDE A FORCE IN THE \(y \)-DIRECTION:

\[F_y - mg = m \ddot{y} \]

\[m \ddot{y} = m \frac{L \dot{\theta}^2}{2} = \frac{3}{4} mg \]

\[F_y = \frac{mg}{4} \]
WE CAN USE FICTITIOUS FORCES TO SOLVE THIS PROBLEM.

THE ACCELERATION OF THE BLOCK IS GIVEN BY THE SUM OF THE FORCES Acting ON IT:

\[M \ddot{a}_M = kx - f \]

\[a_M = \frac{Kx - f}{M} \]

WE CAN THEN WORK IN THE ACCELERATING REFERENCE FRAME OF THE BLOCK, WHERE THERE IS THE ADDITIONAL FICTITIOUS FORCE \(F_{fic} \) Acting ON THE WHEEL:

\[F_{fic} = -Ma_M = \frac{M}{M} (f - kx) \]

THE FORCES ACTING ON THE WHEEL ARE:

\[M \ddot{x} = f - kx + \frac{M}{M} (f - kx) \]

\[\begin{array}{c}
 \hline
 \text{ASSUME WHEEL IS DISK}
 \hline
 \end{array} \]

\[f = -\frac{1}{2}m \dot{x} \]

\[m \ddot{x} = \left(1 + \frac{m}{M}\right)(f - kx) \]

\[\left(\frac{m}{1 + m/M}\right) \ddot{x} + \frac{1}{2}m \dddot{x} = -kx \]

\[\omega^2 \dot{x} + \left(\frac{k}{\frac{1}{2}M + \frac{m}{1 + m/M}}\right)x = 0 \]