High Harmonic Generation Basic Techniques & Challenges

C. Michael R. Greaves

Regimes of Nonlinear Optics

Perturbative regime)	Strong-field regim
<u>μ</u> Δ < 1		$\gamma < 1 \implies Option ioniz$
Bound electrons	1	1 1 I
 χ⁽²⁾ Processes: Second harmonic generation Optical parametric generation Optical rectification 	Multiphoton above-threshold ionization	High harmonic generation
$\chi^{(3)}$ Processes:	l I I <mark>Laser ablation</mark>	Sub-fs x-ray and electron pulses
Stimulated Raman scattering Self-phase modulation Self-focusing	Long-distance self-channeling	I I Self-defocusing
10 ¹¹ 10 ¹² 10 ¹¹	10^{14} 1	0^{15} 10^{16} 10^{17}
	intensity [w/cm j

Free electrons

Relativistic regime $v_{\rm osc} \simeq c$ Hard x rays I Multi-MeV electrons Self-focusing 1 & channeling 10¹⁸ 10¹⁹

- Optical Field Atomic Ionization
- High Harmonic Generation (HHG)
 - Microscopic Description
 - Macroscopic Description
- Techniques for Phase Matched Generation of **Coherent Soft X-rays**
- References

Optical Field Atomic Ionization

- Harmonics are generated by the tunneling, transport and recombination of electrons
- Atomic ionization proceeds by perturbation of the Coulomb potential in the presence of the electric field of the driving laser pulse
- Ionization rate by the Quasistatic Approximation

Strong Field Regime

- Measure of field strength is given by Keldysh scale parameter:
- $\frac{1}{\gamma} = \frac{eE_a}{\omega_0\sqrt{2mW_b}}$ $\frac{1}{\gamma} > 1$ defines the strong field regime
- Coulomb potential is suppressed
- Electron can tunnel through the potential barrier
- Corkum model: Classical description of the electron evolution after ionization

- Optical Field Atomic Ionization
- High Harmonic Generation (HHG)
 - Microscopic Description
 - Macroscopic Description
- Techniques for Phase Matched Generation of **Coherent Soft X-rays**
- References

HHG Microscopic Analysis

• HHG photon radiation dependent on the acceleration of the electron

 $\frac{\partial^2}{\partial t^2} < \psi_e |r|\psi_e >$

- Two simplifying assumptions: 1. Electron is a free particle in continuum states 2. Only ground state interactions are considered
- Under these assumptions:

 $d_n(\tau) = \sum_{\tau_1} \frac{1}{\sqrt{i}} a_{ion}(\tau_b) a_{propogation}(\tau_b, \tau) a_{recombination}(\tau)$

Microscopic II

 Model valid for linearly polarized light • Elliptically polarized light is less efficient

• $a_{propogation}$ time is on the order of the oscillation period of the electric field

• Photon emission occurs upon recombination with the ground state

Microscopic IV

 $(\hbar\omega)_{max} = I_p + 3.2U_p$

$$U_p = \frac{2\pi c a_0 I_L}{\omega^2}$$

Periodic process yields <u>odd</u> harmonics of the laser field

- Optical Field Atomic Ionization
- High Harmonic Generation (HHG)
 - Microscopic Description
 - Macroscopic Description
- Techniques for Phase Matched Generation of **Coherent Soft X-rays**
- References

Macroscopic Analysis (Propagation)

• Macroscopic effects reduce HHG efficiency

- 1. Absorption excitation of core atomic states by harmonic photon
- 2. Dephasing difference in propagating velocities of laser and harmonic photon
- 3. Defocusing distribution in electron density profile due to laser focus

- Optical Field Atomic Ionization
- High Harmonic Generation (HHG)
 - Microscopic Description
 - Macroscopic Description
- Techniques for Phase Matched Generation of **Coherent Soft X-rays**
- References

Phase Matching

- Goal: Increase the coherence length of the harmonic beam and the driving laser pulse for a given harmonic order
- Phase match condition: $\Delta k = qk_{laser} k_{x-ray} = 0$
- Use fiber to increase path length of laser relative to harmonic beam

$$k_{laser} \approx \frac{2\pi}{\lambda} + \frac{2\pi N_a \delta(\lambda)}{\lambda} - N_e r_e \lambda - \frac{\lambda}{2}$$

 $\frac{u_{nm}^2\lambda}{\lambda\pi a^2}$

Phase Matching II

References

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics", Rev Mod Phys. 72, 545 (2002)

X. Zhang, et al. "Phase matching, quasi-phase matching and pulse compression in a single waveguide for enhanced high-harmonic generation", Optics Letters, 30, 1971 (2005)

Rundquist, et al. "Phase-Matched Generation of Coherent Soft X-rays", Science, 280, 1412 (1998)