EDM, Axions, Axion-Like Particles, and The Dark Side

Dmitry Budker
UC Berkeley, and LBNL

CP violation workshop
Mahabaleshwar India, February 2013
Stuart J. Freedman
1944-2012
Outline:

• General introduction to EDMs
• Proposed search for oscillating EDM
• Proposed search for cosmic domains of Axion Like Particles

CP violation workshop
Mahabaleshwar India, February 2013
Permanent EDM of a particle contradicts both P- and T-invariance

T violation was not understood in the first EDM experiments!
Prof. Norman F. Ramsey (1915–2011)

“What if we see an EDM?”
But what about polar molecules?

No EDM in a state with a well defined rotational quantum number!
“Permanent” EDM of KRb

“Given the measured B, the fit of the Stark shift (line in lower panel) gives a permanent electric dipole moment of 0.566(17) D.”

T violation and EDM

- Existence of particle EDM implies T reversal invariance violation
- T reversal violation implies CP violation if CPT symmetry preserved
- Std. model \implies immeasurably small EDM
- EDMs are good to look beyond Std. model
EDM causes spin to precess in an electric field
Universal Statistical Sensitivity Formula ("Equation One")

\[\delta d \approx \frac{\hbar}{E} \cdot \frac{1}{\sqrt{N \tau T}} \]

- Electric field
- Number of Particles
- Coherence Time
- Lifetime of Experimentalist
OSCILLATING AXIONS AND “EDM NMR”

Theory: Peter Graham and Surjeet Rajendran (Stanford)

Experimental dreams: Micah Ledbetter and D. Budker (UC Berkeley & LBNL); Alex Sushkov (Harvard)

CP Violation Workshop, Mahabaleshwar, Maharashtra, India, February 2013
• Introduced to solve strong CP problem in QCD:
• why is n-EDM so small?
• Axions may also solve the Dark Matter problem

AXIONS

<table>
<thead>
<tr>
<th>Interactions</th>
<th>Gravity, Electromagnetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Hypothetical</td>
</tr>
<tr>
<td>Theorized</td>
<td>1977, Peccei and Quinn</td>
</tr>
<tr>
<td>Mass</td>
<td>10^{-12} to 1 eV/c^2</td>
</tr>
<tr>
<td>Electric charge</td>
<td>0</td>
</tr>
<tr>
<td>Spin</td>
<td>0</td>
</tr>
</tbody>
</table>

http://scienceblogs.com/startswithabang/files/2012/04/rotationCurve.jpeg
http://earthsky.org/space/
• f_a - axion decay constant
• expected to be around $M_{\text{GUT}}(\sim 10^{16} \text{ GeV}) - M_{\text{Pl}}(\sim 10^{19} \text{ GeV})$

$\Lambda_{\text{QCD}} \sim 200 \text{ MeV}$ is the QCD confinement scale

$m_a \sim \frac{\Lambda_{\text{QCD}}^2}{f_a}$

• Axion parameter space:

Theoretically “natural” range

Graham & Rajendran, 2011
Axion dark matter detection with cold molecules

Peter W. Graham
Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305, USA

Surjeet Rajendran

- Axion field oscillates
- at a frequency equal to its mass
- \implies time varying CP-odd nuclear moments:
- nEDM, Schiff, …
NEW IDEAS

PHYSICAL REVIEW D 84, 055013 (2011)

Axion dark matter detection with cold molecules

Peter W. Graham

Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305, USA

Surjeet Rajendran

- Existing searches rely on axion-photon conversion via the coupling $\mathcal{L} \supset g_{a\gamma} \frac{a}{f_a} F \tilde{F} = g_{a\gamma} \frac{a}{f_a} \tilde{E} \cdot \tilde{B}$

- Graham & Rajendran: use coupling to gluons instead

- \implies background axions generate nucleon EDM:

$$d_n = 1.2 \times 10^{-16} \theta_{QCD} \text{ e} \cdot \text{cm}.$$

- in analogy to QCD
NEW IDEAS

PHYSICAL REVIEW D 84, 055013 (2011)

Axion dark matter detection with cold molecules

Peter W. Graham
Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305, USA

Surjeet Rajendran

• What is the local density of axion dark-matter field?
• Nearly constant value everywhere after inflation
• Subsequent evolution governed by the mass term

\[\mathcal{L} \supset \frac{g_s^2}{32\pi^2} \frac{a}{f_a} \text{tr} G \tilde{G} + m_a^2 a^2 \]

\[m_a \sim \frac{(200 \text{ MeV})^2}{f_a} \sim \text{MHz} \left(\frac{10^{16} \text{ GeV}}{f_a} \right) \]

• Oscillating solution: \(a(t) = a_0 \cos(m_a t) \)
• All axion interactions suppressed \(\rightarrow \) no thermalization
• Good cold dark matter candidate

Axion field affected by gravitation \rightarrow galactic speed

$\nu/c \sim 10^{-3}$ \implies finite coherence length $\sim h/mv \sim 500$ km($\frac{f_a}{M_{GUT}}$)

and coherence time $\sim h/mv^2$

$\rightarrow \sim 10^6 \times$ field oscillation period
• Assuming that axions are the dark matter
• and taking \(m_a \sim 10^{-19} \text{ GeV}(M_{\text{GUT}}/f_a) \Rightarrow \theta_a = \frac{a_0}{f_a} \sim \frac{\sqrt{g_{\text{DM}}}}{\Lambda_{\text{QCD}}^2} \sim 3 \times 10^{-19} \).

• This generates oscillating EDM:
• Independent of \(f_a \)
• Nucleons radiate (but no problem)
• “Classic” EDM searches are insensitive to oscill. EDM
• The oscillating EDM is tiny
• But lots of potential advantages over static EDM expts
• For example, can increase T_2 via dynamic decoupling
• Easier to fight technical noise at high frequency
• Solid-state NMR seems promising
• Take advantage of large intrinsic fields in polar crystals
• Relates to recent theoretical and experimental work on solid-state non-oscillating EDM searches

$d_n \approx 4 \times 10^{-35} \cos(m_a t) \text{ e} \cdot \text{cm}$

Solid-state “magnetization” experiment:

- Obvious benefit: very large N
- But there could be more…

\[B \approx N\mu \frac{dE}{kT_S} \]

B is measured by a magnetometer.

(F. L. Shapiro, Usp. Phys. Nauk (1968))
The perovskite crystal structure of PbTiO₃
The perovskite crystal structure of PbTiO$_3$
PbTiO$_3$ is a ferroelectric crystal \rightarrow large effective electric field: $E_{\text{int}} \approx 10^8$ V/cm as in diatomic molecules!

A solid-state experiment \rightarrow large number of atoms: $N \approx 10^{22}$ cm$^{-3}$

Nuclear de-magnetization cooling to reach nuclear spin temperature: $T_s \approx 10^{-4}$ K

Other schemes (optical pumping?) may give even lower nuclear spin temperature: $T_s \approx 10^{-8}$ K
Sensitivity of condensed-matter P- and T-violation experiments

D. Budker,¹,²,* S. K. Lamoreaux,³,† A. O. Sushkov,¹,‡ and O. P. Sushkov⁴,§

PRECESSION EDM EXPERIMENTS

• Single-shot Ramsey-type measurement over coherence time (τ):

 \[S_1 \approx \frac{N}{\tau} \frac{dE}{\hbar} \]

 Signal: \[S_1 \approx \frac{N}{\tau} \frac{dE}{\hbar} \]

 Noise: \[N_1 \approx \sqrt{N} \]

 Things get better for longer measurement (t):

 \[\frac{S}{N} \approx \frac{S_1}{N_1} \sqrt{\frac{t}{\tau}} = \sqrt{\frac{N}{\tau}} \frac{dE}{\hbar} \sqrt{t/\tau}. \]

CM MAGNETIZATION EXPERIMENTS

Signal: \[S_1 \propto \frac{N}{T} \frac{dE}{\mu} \]

Noise: \[N_1 \propto \sqrt{N \mu} \]

Things still get better for longer measurement (t):

\[\frac{S}{N} \approx \frac{S_1}{N_1} \sqrt{\frac{t}{\tau}} = \sqrt{\frac{N}{T}} \frac{dE}{\mu} \sqrt{t/\tau}. \]

but…

it is better to have a short relaxation time τ
What happens at low temperature?

• Relaxation is determined by dipole-dipole interactions between spins

• Relaxation time scale and energy of the d-d interaction are related:

\[\mathcal{J} \approx \frac{\hbar}{\tau}. \]

• Induced magnetization scales as \(T^{-1} \) down to:

\[T_{opt} \approx \mathcal{J}. \]

below that \(\Rightarrow \) (anti)ferromagnetic transition

• Substituting into

\[\frac{S}{N} \approx \frac{S_1}{N_1} \frac{t}{\tau} = \sqrt{\frac{dE}{T}} \sqrt{t/\tau}. \]

recovers the usual scaling:

\[\frac{S}{N} \approx \frac{S_1}{N_1} \frac{t}{\tau} = \sqrt{\frac{dE}{\hbar}} \sqrt{\frac{t}{\pi \tau}}. \]
Back to the oscillating EDM story…
Conceptual Setup

Surjeet Rajendran
\[\delta \theta \sim \frac{d_N B}{2 \mu_N B - m_a} \sin \left((2\mu_N B - m_a) t \right) \sin \left(2\mu_N B t \right) \]
Conceptual Setup

Surjeet Rajendran
Rough Estimate

\[\delta B \sim \pi \rho \mu_N \frac{d_N E}{2 \mu_N B - m_a} \sin ((2 \mu_N B - m_a) t) \sin (2 \mu_N B t) \]

\[n \sim \frac{10^{22}}{\text{cm}^3} \]

\[\mu_N \sim \frac{e}{\text{GeV}} \]

\[d_N \sim 10^{-34} \text{ e-cm} \]

\[p \sim \mathcal{O}(1) \]

\[E_{\text{eff}} \sim 10^6 \frac{\text{V}}{\text{cm}} \]

\[(\mu_N B - m_a)^{-1} \sim (10^{-6} m_a)^{-1} \sim t \sim 1 \text{ s} \left(\frac{f_a}{10^{18} \text{GeV}} \right) \]

\[\delta B \sim 10^{-2} \text{ fT} \]
Projected Sensitivity in Lead Titanate

\[\mathcal{L} \supset -\frac{i}{2} g_d a \bar{N} \sigma_{\mu\nu} \gamma^5 N F^{\mu\nu} \]

\[d_N = g_d a \]

\[p \sim 10^{-3} \]

\[p \sim 1 \]

\[\delta B = 0.1 \frac{f_T}{\sqrt{H_2}}, \, n = \frac{10^{22}}{\text{cm}^3}, \, V = 1000 \, \text{cm}^3, \, T_2 = 1 \, \text{s} \]
Solid State Axion Searches

- can most easily search in kHz - MHz frequencies \rightarrow high f_a
- technological challenges, similar to early stages of WIMP detection
- axion dark matter is very well-motivated, no other way to search for at high f_a
- would be both the discovery of dark matter and a glimpse into physics at very high energies

Surjeet Rajendran
Another story:
How would you know you went through a wall?
All-optical magnetometers

- **Pump**
- **“Precession”**
- **Probe**

Figure from: D.B. : A new spin on magnetometry
Nature (News&Views) 422, 574 - 575 (2003)
\[\delta B \approx \frac{1}{\frac{g \mu}{\sqrt{N \tau T}}} \]

- **Ground-state gyromagnetic ratio**
- **Number of atoms**
- **Spin-relaxation time**
- **Measurement time**
Interlude: breakthrough in coating

Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time

M. V. Balabas,¹ T. Karaulanov,² M. P. Ledbetter,²,* and D. Budker²,³

Novel coating type
- \(10^6\) bounces before depolarization!
The Cell
Correlated magnetometers...

- Modern atomic magnetometers are sensitive at the level of $<1 \text{ fT/Hz}^{1/2}$
- Electron and nuclear spin based mags
- What can we learn comparing synchronized separated shielded mags?
Search for exotic fields: GNOME

Global Network Of Magnetometers for Exotic physics
Detecting Domain Walls of Axionlike Models Using Terrestrial Experiments

M. Pospelov,1,2 S. Pustelny,3,4, * M. P. Ledbetter,4 D. F. Jackson Kimball,5 W. Gawlik,3 and D. Budker4,6, †

1Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada
3Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
4Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300
5Department of Physics, California State University - East Bay, Hayward, California 94544-3084, USA
6Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Dated: April 11, 2012)

- Ultralight \((m_a \sim \text{neV})\) axion-like fields forming domain networks
- Wall thickness \(d \sim 2/m_a\)
- Domain size \(L = 10^{-2} \text{ ly}\) consistent with Dark Energy density constraints
- We may be going through a wall every 10 y or so!
- Bottom line: GNOME is quite sensitive to such events!
Outline:

- General introduction to EDMs
- Proposed search for oscillating EDM
- Proposed search for cosmic domains of Axion Like Particles

CP violation workshop
Mahabaleshwar India, February 2013
Conclusions:

This page is intentionally left blank